Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (5): 703-712    DOI: 10.11900/0412.1961.2021.00285
Current Issue | Archive | Adv Search |
Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting
FENG Li1,2(), WANG Guiping1, MA Kai1, YANG Weijie1, AN Guosheng1,2, LI Wensheng1,2
1College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
Cite this article: 

FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting. Acta Metall Sin, 2023, 59(5): 703-712.

Download:  HTML  PDF(4583KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-entropy alloy coatings have a very wide range of industrial applications due to their outstanding mechanical properties and good wear resistance. High-entropy alloy coatings of AlCo x CrFeNiCu (x = 0, 0.5, 1.0, 1.5, 2.0, mole fraction) on 45 steel substrates were successfully produced by cold spraying assisted induction remelting approach. The effect of Co content on the phase and microstructure of cold spraying-assisted high-entropy alloy coating was investigated. The findings reveal that the AlCo x -CrFeNiCu high-entropy alloy coating produced using low-pressure cold spraying assisted induction remelting technique comprises of fcc + bcc two-phase mixed structure, with an equiaxed dendrite + interdendritic structure, with the dendrite being bcc and the interdendritic structure being fcc. The lattice distortion state of AlCo x CrFeNiCu high-entropy alloy coating changes as the Co element changes; when x = 1.0, the lattice strain of AlCo1CrFeNiCu high-entropy alloy coating is the largest. Increases in Co content promote an increase in dendrite number in AlCo x CrFeNiCu high-entropy alloy coatings, as well as dendrite. The EDS analysis demonstrated that Fe, Cr, Co, and Ni were enriched in the dendrite, Cu was enriched in the interdendrite, and Al was evenly distributed throughout the coating. With an increase in Co content, the hardness of AlCo x CrFeNiCu high-entropy alloy coating increases first and then decreases. When x = 1.0, the hardness of the AlCo1CrFeNiCu high-entropy alloy coating is 562.5 HV, and the coating minimum's friction coefficient is 0.352.

Key words:  cold spraying      induction remelting      high-entropy alloy coating      friction and wear     
Received:  12 July 2021     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(52075234);National Key Research and Development Program of China(2016YFE0111400)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00285     OR     https://www.ams.org.cn/EN/Y2023/V59/I5/703

CoatingAlCoCrFeNiCu
AlCrFeNiCu10.9014.625.320.528.7
AlCo0.5CrFeNiCu10.38.711.824.618.725.9
AlCo1CrFeNiCu9.015.89.522.318.924.5
AlCo1.5CrFeNiCu8.625.29.220.914.721.4
AlCo2CrFeNiCu6.531.710.018.213.520.1
Table 1  Contents of each element in high-entropy alloy coating by induction remelting
Fig.1  Cross sectional SEM images of cold spray AlCo x CrFeNiCu prefabricated alloy powder coatings
(a) x = 0 (b) x = 0.5 (c) x = 1.0 (d) x = 1.5 (e) x = 2.0
Fig.2  XRD spectra of induction remelting of AlCo x -CrFeNiCu high-entropy alloy coatings
Coatingfcc phasebcc phase
AlCrFeNiCu0.36540.2873
AlCo0.5CrFeNiCu0.36610.2878
AlCo1CrFeNiCu0.36680.2884
AlCo1.5CrFeNiCu0.36500.2873
AlCo2CrFeNiCu0.36410.2866
Table 2  Lattice constants of each phase in the AlCo x -CrFeNiCu high-entropy alloy coating
Fig.3  Low (a1-e1) and locally high (a2-e2) magnified SEM images of surface morphologies of induction remelting AlCo x CrFeNiCu high-entropy alloy (DR—dendrite, ID—interdendritic structure) (a1, a2) x = 0 (b1, b2) x = 0.5 (c1, c2) x = 1.0 (d1, d2) x = 1.5 (e1, e2) x = 2.0
Fig.4  TEM analyses of AlCo1CrFeNiCu high-entropy alloy coating (a, b) bright field TEM images of coating (c) SAED pattern of DR (d) SAED pattern of ID
Fig.5  Cross sectional SEM image (a), surface SEM image and corresponding EDS (b) of induction remelting AlCo1CrFeNiCu high-entropy alloy coating
Color online
Fig.6  Lattice strains of fcc and bcc phases (εfcc and εbcc) in AlCo x CrFeNiCu high-entropy alloy coating varies with atomic size difference (δ)
Fig.7  Hardnesses (a) and friction coefficients (b) of AlCo x CrFeNiCu high-entropy alloy coatings and 45 steel substrate
Color online
Fig.8  Average wear rates (a) and friction coefficients (b) of AlCo x CrFeNiCu high-entropy alloy coatings
Fig.9  Low (a1-e1) and high (a2-e2) magmfied SEM images showing wear morphologies of AlCo x CrFeNiCu high-entropy alloy coatings (a1, a2) x = 0 (b1, b2) x = 0.5 (c1, c2) x = 1.0 (d1, d2) x = 1.5 (e1, e2) x = 2.0
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
2 Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metall. Mater. Trans., 2004, 35A: 2533
3 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Adv. Eng. Mater., 2004, 6: 74
doi: 10.1002/(ISSN)1527-2648
4 George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
5 Yao X F, Wei J P, Lv Y K, et al. Precipitation σ phase evoluation and mechanical properties of (CoCrFeMnNi)97.02Mo2.98 high entropy alloy[J]. Acta Metall. Sin., 2020, 56: 769
姚小飞, 魏敬鹏, 吕煜坤 等. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56: 769
doi: 10.11900/0412.1961.2019.00330
6 Cao Y H, Wang L L, Wu Q F, et al. Partially recrystallized structure and mechanical properties of CoCrFeNiMo0.2 high-entropy alloy[J]. Acta Metall. Sin., 2020, 56: 333
曹育菡, 王理林, 吴庆峰 等. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56: 333
doi: 10.11900/0412.1961.2019.00274
7 Huang C, Du C W, Dai C D, et al. Research progress of high-entropy alloy coatings[J]. Surf. Technol., 2019, 48(11): 15
黄 灿, 杜翠薇, 代春朵 等. 高熵合金涂层的研究进展[J]. 表面技术, 2019, 48(11): 15
8 Ma M X, Liu Y X, Gu Y, et al. Synthesis of Al x CoCrNiMo high entropy alloy coatings by laser cladding[J]. Appl. Laser, 2010, 30: 433
doi: 10.3788/AL
马明星, 柳沅汛, 谷 雨 等. 激光制备Al x CoCrNiMo高熵合金涂层的研究[J]. 应用激光, 2010, 30: 433
9 Yao C Z, Wei B H, Zhang P, et al. Facile preparation and magnetic study of amorphous Tm-Fe-Co-Ni-Mn multicomponent alloy nanofilm[J]. J. Rare Earths, 2011, 29: 133
doi: 10.1016/S1002-0721(10)60418-8
10 Hsueh H T, Shen W J, Tsai M H, et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100 - x N x [J]. Surf. Coat. Technol., 2012, 206: 4106
doi: 10.1016/j.surfcoat.2012.03.096
11 Ren B, Liu Z X, Li D M, et al. Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution[J]. Mater. Corros., 2012, 63: 828
12 Chen J M, Wang L Q, Zhou J S, et al. Research progress of laser clad Ni-based coatings[J]. China Surf. Eng., 2011, 24(2): 13
陈建敏, 王凌倩, 周健松 等. 激光熔覆Ni基涂层研究进展[J]. 中国表面工程, 2011, 24(2): 13
13 Chen Y B, Ren Z A. A study of processing Cu/WCP composite coatings by laser cladding[J]. Trans. China Weld. Inst., 2002, 23(1): 19
陈彦宾, 任振安. 激光熔覆Cu/WCP复合涂层[J]. 焊接学报, 2002, 23(1): 19
14 Shu D L. Mechanical Properties of Engineering Materials[M]. 2nd Ed., Beijing: China Machinery Industry Press, 2004: 1
束德林. 工程材料力学性能[M]. 第2版. 北京: 机械工业出版社, 2004: 1
15 Zhang P L, Yan H, Xu P Q, et al. Fe-Ni-B-Si-Nb amorphous and nanocrystalline composite coating prepared by laser cladding and remelting[J]. Chin. J. Nonferrous Met., 2011, 21: 2846
张培磊, 闫 华, 徐培全 等. 激光熔覆和重熔制备Fe-Ni-B-Si-Nb系非晶纳米晶复合涂层[J]. 中国有色金属学报, 2011, 21: 2846
16 Hao W J, Sun R L, Niu W, et al. Study on microstructure and corrosion resistance of CoCrFeNiSi x high-entropy alloy coating by laser cladding[J]. Surf. Technol., 2021, 50(8): 343
郝文俊, 孙荣禄, 牛 伟 等. 激光熔覆CoCrFeNiSi x 高熵合金涂层组织及耐蚀性能研究[J]. 表面技术, 2021, 50(8): 343
17 Zhang C, Wu B Q, Wang Q T, et al. Microstructure and properties of FeCrNiCoMnB x high-entropy alloy coating prepared by laser cladding[J]. Rare Met. Mater. Eng., 2017, 46: 2639
张 冲, 吴炳乾, 王乾廷 等. 激光熔覆FeCrNiCoMnB x 高熵合金涂层的组织结构与性能[J]. 稀有金属材料与工程, 2017, 46: 2639
18 Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys[J]. Intermetallics, 2015, 60: 1
doi: 10.1016/j.intermet.2015.01.004
19 Huang Y S, Cai M H, Ye J W. Optical properties of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy[J]. Surf. Technol., 2016, 45(2): 129
黄元盛, 蔡铭洪, 叶均蔚. AlCoCrCu0.5NiFe高熵合金氧化物薄膜光学特性的研究[J]. 表面技术, 2016, 45(2): 129
20 Hung W J, Shun T T, Chiang C J. Effects of reducing Co content on microstructure and mechanical properties of Co x CrFeNiTi0.3 high-entropy alloys[J]. Mater. Chem. Phys., 2018, 210: 170
doi: 10.1016/j.matchemphys.2017.07.024
21 Feng L, Wang G P, An G S, et al. A method of in situ synthesis of low pressure cold sprayed CuNiCoFeCrAl alloy coating[P]. Chin Pat, 201910793715.X, 2019
冯 力, 王贵平, 安国升 等. 一种原位合成低压冷喷涂CuNiCoFeCrAl高熵合金涂层的制备方法[P]. 中国专利, 201910793715.X, 2019
22 Wang Y, Lu X X, Yuan N Y, et al. A novel nickel-copper alternating-deposition coating with excellent tribological and antibacterial property[J]. J. Alloys Compd., 2020, 849: 156222
doi: 10.1016/j.jallcom.2020.156222
23 Zhou Y J, Zhang Y, Wang F J, et al. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCu x Al1 - x solid-solution alloys[J]. Appl. Phys. Lett., 2008, 92: 241917
doi: 10.1063/1.2938690
24 Yu Y N. Principles of Metals[M]. Beijing: Metallurgical, Industry Press, 2000: 1
余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2000: 1
25 Guo L, Wu W Q, Ni S, et al. Effects of annealing on the microstructural evolution and phase transition in an AlCrCuFeNi2 high-entropy alloy[J]. Micron, 2017, 101: 69
doi: 10.1016/j.micron.2017.06.007
26 Han Z D, Chen N, Lu S Y, et al. Structures and corrosion properties of the AlCrFeNiMo0.5Ti x high entropy alloys[J]. Mater. Corros., 2018, 69: 641
[1] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[2] LI Wenya, ZHANG Zhengmao, XU Yaxin, SONG Zhiguo, YIN Shuo. Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review[J]. 金属学报, 2022, 58(1): 1-16.
[3] Mingyu ZHAO,Huijuan ZHEN,Zhihong DONG,Xiuying YANG,Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. 金属学报, 2019, 55(7): 902-910.
[4] YU Lihua, DONG Hongzhi, XU Junhua. INFLUENCE OF C CONTENT ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND FRICTION AND WEAR PROPERTIES OF TiWCN COMPOSITE FILMS[J]. 金属学报, 2014, 50(11): 1350-1356.
[5] WEI Xiangfei, ZHANG Pingze, WEI Dongbo, CHEN Xiaohu, WANG Qiong, WANG Ruonan. FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr-W ALLOYING LAYER OFγ-TiAl ALLOY[J]. 金属学报, 2013, 49(11): 1406-1410.
[6] WANG Zhensheng, ZHANG Meng'en, YANG Shuangshuang, GUO Jianting, ZHOU Lanzhang, CHEN Zhigang. MICROSTRUCTURE, MECHANICAL, FRICTION AND WEAR PROPERTIES OF NiAl-2.5Ta-7.5Cr-1B ALLOY[J]. 金属学报, 2013, 49(11): 1325-1332.
[7] ZHU Chuanlin, ZHANG Junbao, CHENG Congqian, ZHAO Jie. INFLUENCE OF DEFORMATION TEMPERATURE ON HOT DEFORMATION BEHAVIOR OF COLD SPRAYED 304 STAINLESS STEEL COATING MATERIAL[J]. 金属学报, 2013, 49(10): 1275-1280.
[8] XU Junhua JU Hongbo YU Lihua. EFFECTS OF Mo CONTENT ON THE MICROSTRUCTURE AND FRICTION AND WEAR PROPERTIES OF TiMoN FILMS[J]. 金属学报, 2012, 48(9): 1132-1138.
[9] YU Lihua, MA Bingyang, XU Junhua. INFLUENCE OF C CONTENT ON STRUCTURE AND MECHANICAL PROPERTIES OF ZrCN COMPOSITE FILMS[J]. 金属学报, 2012, 48(4): 469-474.
[10] HUANG Caiyun CHEN Qi LIU Lin. FRICTION AND WEAR PROPERTIES OF Ni–FREE Zr–BASED BULK METALLIC GLASSES IN SIMULATED BODY FLUID[J]. 金属学报, 2010, 46(6): 681-686.
[11] WU Xiangkun ZHOU Xianglin WANG Jianguo ZHANG Jishan. NUMERICAL INVESTIGATION ON ENERGY BALANCE AND DEPOSITION BEHAVIOR DURING COLD SPRAYING[J]. 金属学报, 2010, 46(4): 385-389.
[12] WANG Zhensheng GUO Jianting ZHOU Lanzhang SHENG Liyuan HU Zhuangqi. HIGH TEMPERATURE WEAR BEHAVIOR OF NiAl--Cr(Mo)--Ho--Hf EUTECTIC ALLOY[J]. 金属学报, 2009, 45(3): 297-301.
[13] LI Wenya; LI Changjiu; WANG Yuyue; YANG Guanjun. Effect of parameters of cold sprayed Cu particles on its impacting behavior[J]. 金属学报, 2005, 41(3): 282-286 .
[14] ZHANG Wei;XUE Qunji;ZHANG Xushou(Laboratory of Solid Lubrication; Lanzhou Institute of Chemical Physics; The Chinese Academy of Sciences;Lanzhou 730000). THE INFLUENCE OF ION BEAM BOMBARDMENT TO THE TRIBOLOGICAL PERFORMANCE OF MULTILAYER FILM[J]. 金属学报, 1997, 33(11): 1165-1170.
No Suggested Reading articles found!