|
|
Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC |
GONG Xiangpeng, WU Cuilan( ), LUO Shifang, SHEN Ruohan, YAN Jun |
Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha 410012, China |
|
Cite this article:
GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC. Acta Metall Sin, 2023, 59(11): 1428-1438.
|
Abstract Due to their excellent combination of low density, high strength, and stiffness, third-generation Al-Cu-Li-Mg alloys are important lightweight materials in the aerospace industry. Precipitation strengthening or hardening, which is controlled by precipitates, including the structure, size, morphology, distribution, and volume fraction of precipitates, is mainly responsible for the alloy's excellent mechanical properties. The precipitates in Al-Cu-Li-Mg alloys mainly include T1, S, δ', δ'/θ'/δ', θ', GPB, and various metastable phases. In practice, the Al alloys are inevitably stored for a period at ambient temperature before subsequent processing during which natural aging occurs. Natural aging has an important effect on the precipitation behavior of subsequent artificial aging in Al-Cu-Li-Mg alloys, but the related mechanism is still highly controversial. To solve this problem, the effects of natural aging treatment on the microstructure and mechanical properties of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr alloy treated by artificial aging at 160oC were investigated using TEM, three-dimensional atom probe (3DAP), three-dimensional electron tomography (3DET), and mechanical property testing. It was discovered that natural aging significantly changed the artificial aging hardening behavior and caused two strengthening peaks in the alloy's hardness curve. The Mg-rich and Cu-Mg clusters and δ' precipitates formed during natural aging were first dissolved at the initial stage of artificial aging, which resulted in a decrease in hardness. Then, large numbers of GPB zones formed uniformly and dispersedly, followed by the formation of T1 precipitates with the increase of aging time, which caused the increase in hardness. The hardness reached its first peak value at 96 h. Following that, GPB zones dissolved and the hardness decreased again. When the aging time was continuously exceeded, the volume fraction of T1 precipitates and the number of lath-like S precipitates increased, so the hardness increased again and reached the second peak value at 192 h. In other words, the atomic clusters that form during natural aging can significantly modify precipitation behaviors and the evolution of mechanical properties during artificial aging.
|
Received: 17 September 2021
|
|
Fund: National Natural Science Foundation of China(51831004);National Natural Science Foundation of China(52171006);National Natural Science Foundation of China(11427806) |
Corresponding Authors:
WU Cuilan, professor, Tel: (0731)88664010, E-mail: cuilanwu@hnu.edu.cn
|
1 |
Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
|
2 |
Rioja R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications [J]. Mater. Sci. Eng., 1998, A257: 100
|
3 |
Gao Z, Chen J H, Duan S Y, et al. Complex precipitation sequences of Al-Cu-Li-(Mg) alloys characterized in relation to thermal ageing processes [J]. Acta Metal. Sin. (Engl. Lett.), 2016, 29: 94
doi: 10.1007/s40195-016-0366-5
|
4 |
Dorin T, Deschamps A, De Geuser F, et al. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al-Cu-Li alloy [J]. Acta Mater., 2014, 75: 134
doi: 10.1016/j.actamat.2014.04.046
|
5 |
Gable B M, Zhu A W, Csontos A A, et al. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy [J]. J. Light Met., 2001, 1: 1
doi: 10.1016/S1471-5317(00)00002-X
|
6 |
Rodgers B I, Prangnell P B. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195 [J]. Acta Mater., 2016, 108: 55
doi: 10.1016/j.actamat.2016.02.017
|
7 |
Van Smaalen S, Meetsma A, De Boer J L, et al. Refinement of the crystal structure of hexagonal Al2CuLi [J]. J. Solid State Chem., 1990, 85: 293
doi: 10.1016/S0022-4596(05)80086-6
|
8 |
Tsivoulas D, Robson J D. Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al-Cu-Li alloys [J]. Acta Mater., 2015, 93: 73
doi: 10.1016/j.actamat.2015.03.057
|
9 |
Gao Z, Liu J Z, Chen J H, et al. Formation mechanism of precipitate T1 in AlCuLi alloys [J]. J. Alloys Compd., 2015, 624: 22
doi: 10.1016/j.jallcom.2014.10.208
|
10 |
Liu Z R, Chen J H, Wang S B, et al. The structure and the properties of S-phase in AlCuMg alloys [J]. Acta Mater., 2011, 59: 7396
doi: 10.1016/j.actamat.2011.08.009
|
11 |
Styles M J, Hutchinson C R, Chen Y, et al. The coexistence of two S (Al2CuMg) phases in Al-Cu-Mg alloys [J]. Acta Mater., 2012, 60: 6940
doi: 10.1016/j.actamat.2012.08.044
|
12 |
Yoshimura R, Konno T J, Abe E, et al. Transmission electron microscopy study of the early stage of precipitates in aged Al-Li-Cu alloys [J]. Acta Mater., 2003, 51: 2891
doi: 10.1016/S1359-6454(03)00104-6
|
13 |
Konno T J, Hiraga K, Kawasaki M. Guinier-Preston (GP) zone revisited: Atomic level observation by HAADF-TEM technique [J]. Scr. Mater., 2001, 44: 2303
doi: 10.1016/S1359-6462(01)00909-5
|
14 |
Duan S Y, Wu C L, Gao Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2017, 129: 352
doi: 10.1016/j.actamat.2017.03.018
|
15 |
Ringer S P, Sakurai T, Polmear I J. Origins of hardening in aged Al-Cu-Mg-(Ag) alloys [J]. Acta Mater., 1997, 45: 3731
doi: 10.1016/S1359-6454(97)00039-6
|
16 |
Reich L, Ringer S P, Hono K. Origin of the initial rapid age hardening in an Al-1.7at.%Mg-1.1at.%Cu alloy [J]. Philos. Mag. Lett., 1999, 79: 639
doi: 10.1080/095008399176689
|
17 |
Kovarik L, Court S A, Fraser H L, et al. GPB zones and composite GPB/GPBII zones in Al-Cu-Mg alloys [J]. Acta Mater., 2008, 56: 4804
doi: 10.1016/j.actamat.2008.05.042
|
18 |
Kovarik L, Mills M J. Structural relationship between one-dimensional crystals of Guinier-Preston-Bagaryatsky zones in Al-Cu-Mg alloys [J]. Scr. Mater., 2011, 64: 999
doi: 10.1016/j.scriptamat.2011.01.033
|
19 |
Kovarik L, Mills M J. Ab initio analysis of Guinier-Preston-Bagaryatsky zone nucleation in Al-Cu-Mg alloys [J]. Acta Mater., 2012, 60: 3861
doi: 10.1016/j.actamat.2012.03.044
|
20 |
Duan S Y, Le Z, Chen Z K, et al. Li-atoms-induced structure changes of Guinier-Preston-Bagaryatsky zones in AlCuLiMg alloys [J]. Mater. Charact., 2016, 121: 207
doi: 10.1016/j.matchar.2016.09.037
|
21 |
Gong X P, Luo S F, Li S Y, et al. Dislocation-induced precipitation and its strengthening of Al-Cu-Li-Mg alloys with high Mg [J]. Acta Metal. Sin. (Engl. Lett.), 2021, 34: 597
doi: 10.1007/s40195-020-01166-1
|
22 |
Decreus B, Deschamps A, De Geuser F, et al. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys [J]. Acta Mater., 2013, 61: 2207
doi: 10.1016/j.actamat.2012.12.041
|
23 |
Ma P P, Zhan L H, Liu C H, et al. Pre-strain-dependent natural ageing and its effect on subsequent artificial ageing of an Al-Cu-Li alloy [J]. J. Alloys Compd., 2019, 790: 8
doi: 10.1016/j.jallcom.2019.03.072
|
24 |
Li S Y, Wang Q, Chen J H, et al. The effect of thermo-mechanical treatment on the formation of T1 phase and δ'/θ'/δ' composite precipitate in an Al-Cu-Li-Mg alloy [J]. Mater. Charact., 2021, 176: 111123
doi: 10.1016/j.matchar.2021.111123
|
25 |
Liu C H, Lai Y X, Chen J H, et al. Natural-aging-induced reversal of the precipitation pathways in an Al-Mg-Si alloy [J]. Scr. Mater., 2016, 115: 150
doi: 10.1016/j.scriptamat.2015.12.027
|
26 |
Pogatscher S, Antrekowitsch H, Leitner H, et al. Mechanisms controlling the artificial aging of Al-Mg-Si Alloys [J]. Acta Mater., 2011, 59: 3352
doi: 10.1016/j.actamat.2011.02.010
|
27 |
Martinsen F A, Ehlers F J H, Torsæter M, et al. Reversal of the negative natural aging effect in Al-Mg-Si alloys [J]. Acta Mater., 2012, 60: 6091
doi: 10.1016/j.actamat.2012.07.047
|
28 |
Deschamps A, Garcia M, Chevy J, et al. Influence of Mg and Li content on the microstructure evolution of Al-Cu-Li alloys during long-term ageing [J]. Acta Mater., 2017, 122: 32
doi: 10.1016/j.actamat.2016.09.036
|
29 |
Wu L, Chen Y C, Li X F, et al. Rapid hardening during natural aging of Al-Cu-Li based alloys with Mg addition [J]. Mater. Sci. Eng., 2019, A743: 741
|
30 |
Ivanov R, Deschamps A, De Geuser F. Clustering kinetics during natural ageing of Al-Cu based alloys with (Mg, Li) additions [J]. Acta Mater., 2018, 157: 186
doi: 10.1016/j.actamat.2018.07.035
|
31 |
Nellist P D, Pennycook S J. Incoherent imaging using dynamically scattered coherent electrons [J]. Ultramicroscopy, 1999, 78: 111
doi: 10.1016/S0304-3991(99)00017-0
|
32 |
Hillyard S, Silcox J. Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging [J]. Ultramicroscopy, 1995, 58: 6
doi: 10.1016/0304-3991(94)00173-K
|
33 |
Wang Z M, Li H, Shen Q, et al. Nano-precipitates evolution and their effects on mechanical properties of 17-4 precipitation-hardening stainless steel [J]. Acta Mater., 2018, 156: 158
doi: 10.1016/j.actamat.2018.06.031
|
34 |
Duan S Y. The influence of lithium on the ageing precipitation behavior of Al-Cu-Mg alloys [D]. Changsha: Hunan University, 2017
|
|
段石云. 合金元素锂对Al-Cu-Mg合金时效析出行为的影响 [D]. 长沙: 湖南大学, 2017
|
35 |
Zhu A W, Gable B M, Shiflet G J, et al. Trace element effects on precipitation in Al-Cu-Mg-(Ag, Si) alloys: A computational analysis [J]. Acta Mater., 2004, 52: 3671
doi: 10.1016/j.actamat.2004.04.021
|
36 |
Zhu A W, Starke Jr E A, Shiflet G J. An FP-CVM calculation of pre-precipitation clustering in Al-Cu-Mg-Ag alloys [J]. Scr. Mater., 2005, 53: 35
doi: 10.1016/j.scriptamat.2005.03.023
|
37 |
Starink M J, Wang S C. The thermodynamics of and strengthening due to co-clusters: General theory and application to the case of Al-Cu-Mg alloys [J]. Acta Mater., 2009, 57: 2376
doi: 10.1016/j.actamat.2009.01.021
|
38 |
Ringer S P, Hono K, Sakurai T, et al. Cluster hardening in an aged Al-Cu-Mg alloy [J]. Scr. Mater., 1997, 36: 517
doi: 10.1016/S1359-6462(96)00415-0
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|