Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (5): 695-708    DOI: 10.11900/0412.1961.2020.00508
Research paper Current Issue | Archive | Adv Search |
Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy
GAO Yubi1,2,3, DING Yutian1,2(), LI Haifeng4, DONG Hongbiao5(), ZHANG Ruiyao6, LI Jun5, LUO Quanshun3
1.State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2.School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3.Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK
4.State Key Laboratory of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals, Beijing 100088, China
5.Department of Engineering, University of Leicester, Leicester LE1 7RH, UK
6.Engineering & Innovation, Open University, Milton Keynes MK7 6AA, UK
Cite this article: 

GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy. Acta Metall Sin, 2022, 58(5): 695-708.

Download:  HTML  PDF(4069KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH3625 alloy is a typical polycrystalline material. The mechanical properties of a crystal within the alloy depend on the single crystal properties, lattice orientation, and orientations of neighboring crystals. However, accurate determination of single crystal properties is critical in developing a quantitative understanding of the micromechanical behavior of GH3625. In this study, the effect of deformation rate on the elastoplastic deformation behavior of GH3625 was investigated using in situ neutron diffraction room-temperature compression experiments, EBSD, and TEM. The results showed that the microscopic stress-strain curve included elastic deformation (applied stress σ ≤ 300 MPa), elastoplastic transition (300 MPa < σ ≤ 350 MPa), and plastic deformation (σ > 350 MPa) stages, which agreed with the mesoscopic lattice strain behavior. Meanwhile, the deformation rate was closely related to the crystal elastic and plastic anisotropy. The results of the lattice strain, peak width, and peak intensity reflected by the specific hkl showed that the deformation rate had little effect on the elastic anisotropy of the crystal, but had a significant effect on the plastic anisotropy of the crystal. With the increase in the deformation rate, the high angle grain boundaries gradually changed to the low angle grain boundaries, and the proportion of twin boundaries gradually reduced. Also, the grains transformed from uniform deformation to nonuniform deformation. Moreover, with the increase in deformation rate, the total dislocation density (ρ) of the alloy first decreased and then increased, whereas the geometrically necessary dislocation density (ρGND) monotonically increased, and the statistically stored dislocation (SSD) density (ρSSD) monotonically decreased. Meanwhile, the abnormal work hardening behavior of the sample at a deformation rate of 0.2 mm/min was mainly related to the SSD generated by uniform deformation. Additionally, the contribution of dislocation strengthening and TEM observation confirmed that the dominant deformation of GH3625 was dislocation slip, and its work hardening mechanism was dislocation strengthening.

Key words:  GH3625 alloy      deformation rate      in situ neutron diffraction      lattice strain      elastic and plastic anisotropy     
Received:  18 December 2020     
ZTFLH:  TG146.15  
Fund: National Key Research and Development Program of China(2017YFA0700703);National Natural Science Foundation of China(51661019);Program for Major Projects of Science and Technology in Gansu Province(145RTSA004);Hongliu First-Class Discipline Construction Plan of Lanzhou University of Technology, Incubation Program of Excellent Doctoral Dissertation-Lanzhou University of Technology, and Lanzhou University of Technology Excellent Students Studying Abroad Learning Exchange Fund and State Key Laboratory of Cooperation and Exchange Fund
About author:  DONG Hongbiao,DONG Hongbiao, professor, Tel: 00441162522528, E-mail: h.dong@le.ac.uk
DING Yutian, professor, Tel: (0931)2976688, E-mail: dingyt@lut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00508     OR     https://www.ams.org.cn/EN/Y2022/V58/I5/695

Fig.1  Compression stress-strain curves (a, b) and work hardening rate curves (c, d) of GH3625 alloy at different deformation rates (r) (Inset in Fig.1c show the locally enlarged work hardening rate curve of alloy elastic deformation stage at different deformation rates; A, B, and C represent the widths of the alloy elasto-plastic transition stage at different deformation rates in Figs.1b and d, while a, b, and c are the elasto-plastic transition points at different deformation rates; The sawtooth on the curve in Fig.1a represents the stress relaxation phenomenon under displacement-control mode (holding strain))
Fig.2  Evolutions of neutron diffraction patterns of GH3625 alloy during compression deformation at r = 0.2 mm/min (a), r = 0.5 mm/min (b), and r = 1.0 mm/min (c) (d—interplanar spacing)
Stress/(111)(200)(220)(311)
strain

d

nm

FWHM nm

I

a.u.

d

nm

FWHM nm

I

a.u.

d

nm

FWHM nm

I

a.u.

d

nm

FWHM nm

I

a.u.

5 MPa0.208300.000841.173580.180400.000680.694360.127580.000480.503830.108780.000390.65635
100 MPa0.208220.000841.173370.180310.000700.683170.127520.000460.496030.108740.000400.66543
150 MPa0.208180.000831.165700.180260.000700.690870.127500.000460.498450.108710.000410.67213
200 MPa0.208140.000831.181920.180190.000670.687820.127460.000450.529440.108680.000420.64227
250 MPa0.208110.000851.181350.180130.000680.698150.127440.000480.510710.108650.000400.65870
300 MPa0.208050.000851.241630.180030.000700.699990.127410.000470.526550.108630.000400.67256
350 MPa0.208030.000911.289640.179940.000750.709850.127410.000470.516370.108600.000440.60751
-1.4%0.208020.000911.273270.179940.000760.676520.127410.000480.546830.108600.000450.62113
-2.8%0.207990.000941.176620.179890.000860.608780.127400.000510.521390.108570.000490.57157
-4.4%0.207990.001001.086040.179870.000880.539750.127380.000550.516390.108560.000520.50773
-5.8%0.207960.001010.977780.179820.000960.482650.127370.000570.522860.108540.000570.45533
-7.6%0.207930.001060.879450.179780.001030.448690.127350.000610.528130.108520.000570.45751
-9.0%0.207900.001070.830190.179750.001150.393490.127330.000630.535340.108500.000590.44199
-10.6%0.207870.001110.783690.179700.001130.423110.127300.000680.532570.108490.000660.42624
Table 1  d, diffraction peak intensity (I), and full width at half maximum (FWHM) of GH3625 alloy at different stresses/strains and different (hkl) crystal planes under r = 0.2 mm/min
Stress/(111)(200)(220)(311)
strain

d

nm

FWHM

nm

I

a.u.

d

nm

FWHM

nm

I

a.u.

d

nm

FWHM

nm

I

a.u.

d

nm

FWHM

nm

I

a.u.

5 MPa0.208340.000831.119340.180430.000610.393880.127610.000480.582430.108820.000410.58707
100 MPa0.208270.000831.109250.180330.000650.401340.127550.000480.610180.108760.000410.60243
150 MPa0.208240.000851.097920.180280.000610.425570.127520.000470.615320.108730.000400.60224
200 MPa0.208190.000851.121290.180210.000620.406320.127500.000470.608320.108710.000410.59379
250 MPa0.208150.000851.132480.180150.000630.423010.127470.000480.618030.108680.000410.58574
300 MPa0.208110.000851.231820.180060.000620.448080.127450.000490.611650.108660.000410.59740
350 MPa0.208080.000911.312230.179980.000680.465370.127440.000510.640620.108640.000460.55437
-1.9%0.208080.000941.293990.179980.000730.445670.127450.000510.663330.108620.000450.54972
-3.4%0.208060.000981.192560.179930.000760.408790.127440.000540.648450.108620.000490.53572
-5.4%0.208040.001001.106160.179900.000840.357670.127420.000570.657660.108600.000520.49431
-7.4%0.208010.001031.048470.179890.000920.333640.127400.000600.671820.108580.000550.46532
-10.0%0.208000.001070.959930.179860.000990.313100.127390.000640.670010.108570.000560.49341
-12.2%0.207990.001100.882180.179820.001060.331930.127380.000670.669010.108550.000620.44359
-14.8%0.207970.001150.828220.179790.001100.357730.127350.000710.654680.108540.000680.47036
-18.3%0.207930.001250.800480.179770.001320.465610.127300.000740.576090.108520.000710.51191
Table 2  d, I, and FWHM of GH3625 alloy at different stresses/strains and different (hkl) crystal planes under r = 0.5 mm/min
Stress/(111)(200)(220)(311)
strain

d

nm

FWHM nm

I

a.u.

d

nm

FWHM

nm

I

a.u.

d

nm

FWHM nm

I

a.u.

d

nm

FWHM nm

I

a.u.

5 MPa0.208340.000841.088750.180430.000610.456290.127610.000480.570520.108800.000410.58913
100 MPa0.208260.000831.084200.180330.000620.470410.127550.000490.564110.108770.000420.58839
150 MPa0.208210.000841.105900.180290.000660.442410.127520.000480.594920.108730.000400.60091
200 MPa0.208180.000841.127070.180230.000680.436530.127500.000490.573890.108710.000430.56066
250 MPa0.208130.000841.072780.180160.000620.463510.127470.000480.573120.108690.000420.58799
300 MPa0.208090.000841.205570.180060.000660.488470.127440.000460.609830.108660.000410.60782
350 MPa0.208070.000911.279270.179980.000710.490840.127440.000510.625140.108620.000450.57167
-1.7%0.208080.000921.274990.179980.000750.482620.127440.000510.631460.108620.000460.54988
-3.1%0.208050.000941.233290.179950.000810.426480.127440.000560.609000.108620.000490.52269
-4.8%0.208030.001011.127620.179900.000870.379790.127420.000560.649100.108610.000540.49041
-6.3%0.208010.001021.061780.179890.000920.350760.127420.000600.650440.108590.000550.47232
-8.2%0.208000.001070.975670.179840.001010.357280.127390.000630.646310.108560.000600.44765
-9.6%0.207970.001120.936140.179820.001050.360700.127380.000690.638840.108540.000610.47602
-11.3%0.207940.001210.869710.179820.001160.388220.127340.000710.655720.108520.000670.47575
-12.3%0.208400.001160.851740.180450.001100.458900.127670.000660.658230.108850.000660.52180
Table 3  d, I, and FWHM of GH3625 alloy at different stresses/strains and different (hkl) crystal planes under r = 1.0 mm/min
Fig.3  Lattice strain as a function of applied stress for GH3625 alloy at different deformation rates and different (hkl) crystal planes
(a) (111) crystal plane (b) (200) crystal plane
(c) (220) crystal plane (d) (311) crystal plane
r / (mm·min-1)E111 / GPaE220 / GPaE311 / GPaE200 / GParE
0.2255.41 ± 6.93224.68 ± 6.40193.63 ± 4.82146.07 ± 8.441.75
0.5261.16 ± 7.17243.10 ± 6.16199.51 ± 4.21145.23 ± 7.171.80
1.0252.99 ± 5.09236.29 ± 5.92201.09 ± 8.99145.10 ± 11.421.74
Table 4  Elastic moduli (Ehkl ) and Young's Modulus anisotropies (rE ) of GH3625 alloy under different deformation rates
Fig.4  Evolutions of diffraction peak intensity of GH3625 alloy during compression deformation at different deformation rates and different (hkl) crystal planes
(a) (111) crystal plane (b) (200) crystal plane (c) (220) crystal plane (d) (311) crystal plane
Fig.5  Evolutions of diffraction peak width of GH3625 alloy during compression deformation at different deformation rates and different (hkl) crystal planes
(a) (111) crystal plane (b) (200) crystal plane (c) (220) crystal plane (d) (311) crystal plane
Fig.6  Evolutions of microstructure and strain distribution characteristics in GH3625 alloy under different states (TD—transverse direction, LD—longitudinal direction, TBs—twin boundaries; gray lines show the low angle grain boundaries (LAGBs), black lines show the high angle grain boundaries (HAGBs); Insets show the kernel average misorientation (KAM) images of rectangle regions)
(a) solution state (b) r = 0.2 mm/min (c) r = 0.5 mm/min (d) r = 1.0 mm/min
Fig.7  Evolutions of misorientation angle distribution of GH3625 alloy under different states (fLAGB—fraction of LAGB, fHAGB—fraction of HAGB, fTB—fraction of TB)
(a) solution state (b) r = 0.2 mm/min (c) r = 0.5 mm/min (d) r = 1.0 mm/min
Fig.8  TEM images showing the microstructures of GH3625 alloy after compression deformation at r = 0.5 mm/min
(a) dislocation network(b) dislocation tangle(c) grain (Inset in Fig.8c shows the SAED pattern of deformation band )
Fig.9  Geometrically necessary dislocation density (ρGND) distribution (a) and average ρGND (b) of GH3625 alloy under different states
Fig.10  Variations of total dislocation density (ρ)with strain for GH3625 alloy at different defor-mation rates (a) and contribution of dislocation strengthening (b)
r / (mm·min-1)ρρGNDρSSD
0.218.48 ± 1.8111.337.15 ± 1.81
0.518.62 ± 1.4913.175.45 ± 1.49
1.015.83 ± 1.1914.281.55 ± 1.19
Table 5  ρ, ρGND, and statistically stored dislocation density (ρSSD) of GH3625 alloy after compression deformation under different rates
Fig.11  Orientation distribution function (ODF) sections of GH3625 alloy under different states (Φ, φ1, and φ2—Euler angles)
(a) solution state (b) r = 0.2 mm/min (c) r = 0.5 mm/min (d) r = 1.0 mm/min
1 Mathew M D, Parameswaran P, Rao K B S. Microstructural changes in alloy 625 during high temperature creep [J]. Mater. Charact., 2008, 59: 508
doi: 10.1016/j.matchar.2007.03.007
2 Ren X, Sridharan K, Allen T R. Corrosion behavior of alloys 625 and 718 in supercritical water [J]. Corrosion, 2007, 63: 603
doi: 10.5006/1.3278410
3 Mittra J, Dubey J S, Banerjee S. Acoustic emission technique used for detecting early stages of precipitation during aging of Inconel 625 [J]. Scr. Mater., 2003, 49: 1209
doi: 10.1016/S1359-6462(03)00488-3
4 Wong S L, Dawson P R. Influence of directional strength-to-stiffness on the elastic-plastic transition of fcc polycrystals under uniaxial tensile loading [J]. Acta Mater., 2010, 58: 1658
doi: 10.1016/j.actamat.2009.11.009
5 Yan S C, Cheng M, Zhang S H, et al. High-temperature high-speed hot deformation behavior of Inconel alloy 625 [J]. Chin. J. Mater. Res., 2010, 24: 239
闫士彩, 程 明, 张士宏 等. Inconel 625合金的高温高速热变形行为 [J]. 材料研究学报, 2010, 24: 239
6 Li D F, Guo Q M, Guo S L, et al. The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy [J]. Mater. Des., 2011, 32: 696
doi: 10.1016/j.matdes.2010.07.040
7 Badrish C A, Kotkunde N, Salunke O, et al. Study of anisotropic material behavior for Inconel 625 alloy at elevated temperatures [J]. Mater. Today: Proc., 2019, 18: 2760
8 Rodriguez R, Hayes R W, Berbon P B, et al. Tensile and creep behavior of cryomilled Inco 625 [J]. Acta Mater., 2003, 51: 911
doi: 10.1016/S1359-6454(02)00494-9
9 Ding Y T, Gao Y B, Dou Z Y, et al. Study on cold deformation behavior and heat treatment process of GH3625 superalloy tubes [J]. Mater. Rev., 2017, 31(10): 70
丁雨田, 高钰璧, 豆正义 等. GH3625合金管材冷变形行为及热处理工艺研究 [J]. 材料导报, 2017, 31(10): 70
10 Ding Y T, Gao Y B, Dou Z Y, et al. Microstructure evolution during intermediate annealing of cold-deformed GH3625 superalloy tubes [J]. Trans. Mater. Heat Treat., 2017, 38(2): 178
丁雨田, 高钰璧, 豆正义 等. 冷变形GH3625合金管材中间退火过程中的组织演变 [J]. 材料热处理学报, 2017, 38(2): 178
11 Gao Y B, Ding Y T, Chen J J, et al. Behavior of cold work hardening and annealing softening and microstructure characteristics of GH3625 superalloy [J]. Chin. J. Nonferrous Met., 2019, 29: 44
高钰璧, 丁雨田, 陈建军 等. GH3625合金冷变形硬化、退火软化行为及其组织特征 [J]. 中国有色金属学报, 2019, 29: 44
12 Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction [J]. Acta Mater., 2004, 52: 5737
doi: 10.1016/j.actamat.2004.08.016
13 Jia N, Peng R L, Brown D W, et al. Tensile deformation behavior of duplex stainless steel studied by in-situ time-of-flight neutron diffraction [J]. Metall. Mater. Trans., 2008, 39A: 3134
14 Daymond M R, Bouchard P J. Elastoplastic deformation of 316 stainless steel under tensile loading at elevated temperatures [J]. Metall. Mater. Trans., 2006, 37A: 1863
15 Lee C, Kim G, Chou Y, et al. Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy [J]. Sic. Adv., 2020, 6: eaaz4748
16 Wang Z Q, Stoica A D, Ma D, et al. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction [J]. Mater. Sci. Eng., 2016, A674: 406
17 Santisteban J R, Daymond M R, James J A, et al. ENGIN-X: A third-generation neutron strain scanner [J]. J. Appl. Cryst., 2006, 39: 812
doi: 10.1107/S0021889806042245
18 Mo S H, Li X W. Fundamentals of Materials Science [M]. Harbin: Harbin Institute of Technology Press, 2012: 238
莫淑华, 李学伟. 材料科学基础 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2012: 238
19 Yu D J, Huang L, Chen Y, et al. Real-time in situ neutron diffraction investigation of phase-specific load sharing in a cold-rolled TRIP sheet steel [J]. JOM, 2018, 70: 1576
doi: 10.1007/s11837-018-2947-4
20 Ye X Y, Dong J X, Zhang M C. Cold deformation of GH738 alloy and its recrystallization behavior during intermediate annealing [J]. Rare Met. Mater. Eng., 2013, 42: 1423
叶校瑛, 董建新, 张满仓. GH738合金冷变形及中间退火再结晶行为研究 [J]. 稀有金属材料与工程, 2013, 42: 1423
21 Wen B, Lü X D, Du J H. Cold deformation behavior of GH4169 alloy [J]. Heat Treat. Met., 2020, 45: 23
温 博, 吕旭东, 杜金辉. GH4169合金的冷变形行为 [J]. 金属热处理, 2020, 45: 23
22 Zhu C Y, Harrington T, Gray G T, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel [J]. Acta Mater., 2018, 155: 104
doi: 10.1016/j.actamat.2018.05.022
23 Harjo S, Tomota Y, Lukáš P, et al. In situ neutron diffraction study of α-γ Fe-Cr-Ni alloys under tensile deformation [J]. Acta Mater., 2001, 49: 2471
doi: 10.1016/S1359-6454(01)00147-1
24 Clausen B, Lorentzen T, Leffers T. Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses [J]. Acta Mater., 1998, 46: 3087
doi: 10.1016/S1359-6454(98)00014-7
25 Wu Y, Liu W H, Wang X L, et al. In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy [J]. Appl. Phys. Lett., 2014, 104: 051910
26 Aba-Perea P E, Pirling T, Withers P J, et al. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys [J]. Mater. Des., 2015, 89: 856
doi: 10.1016/j.matdes.2015.09.152
27 Clausen B, Lorentzen T, Bourke M A M, et al. Lattice strain evolution during uniaxial tensile loading of stainless steel [J]. Mater. Sci. Eng., 1999, A259: 17
28 Huang E W, Barabash R, Jia N, et al. Slip-system-related dislocation study from in-situ neutron measurements [J]. Metall. Mater. Trans., 2008, 39A: 3079
29 Woo W, Huang E W, Yeh J W, et al. In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy [J]. Intermetallics, 2015, 62: 1
doi: 10.1016/j.intermet.2015.02.020
30 Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction [J]. Acta Mater., 2017, 127: 471
doi: 10.1016/j.actamat.2017.01.034
31 Wang Y Q, Liu B, Yan K, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
doi: 10.1016/j.actamat.2018.05.013
32 Ungár T. Microstructural parameters from X-ray diffraction peak broadening [J]. Scr. Mater., 2004, 51: 777
doi: 10.1016/j.scriptamat.2004.05.007
33 Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction [J]. Microsc. Microanal., 2011, 17: 316
34 Gao Y B, Ding Y T, Chen J J, et al. Evolution of microstructure and texture during cold deformation of hot-extruded GH3625 alloy [J]. Acta Metall. Sin., 2019, 55: 547
高钰璧, 丁雨田, 陈建军 等. 挤压态GH3625合金冷变形过程中的组织和织构演变 [J]. 金属学报, 2019, 55: 547
doi: 10.11900/0412.1961.2018.00414
35 Li B L, Godfrey A, Meng Q C, et al. Microstructural evolution of IF-steel during cold rolling [J]. Acta Mater., 2004, 52: 1069
doi: 10.1016/j.actamat.2003.10.040
36 Randle V. ‘Special’ boundaries and grain boundary plane engineering [J]. Scr. Mater., 2006, 54: 1011
doi: 10.1016/j.scriptamat.2005.11.050
37 Feng C, Li D F, Guo S L, et al. Effects of tensile deformation on microstructure and mechanical properties of Hastelloy C-276 alloy [J]. Rare Met. Mater. Eng., 2016, 45: 3128
冯 策, 李德福, 郭胜利 等. 拉伸变形对Hastelloy C-276合金组织与力学性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 3128
38 El-Danaf E, Kalidindi S R, Doherty R D. Influence of grain size and stacking-fault energy on deformation twinning in fcc metals [J]. Metall. Mater. Trans., 1999, 30A: 1223
39 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
40 Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
doi: 10.1016/S0022-5096(98)00103-3
41 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
42 Christien F, Telling M T F, Knight K S. Neutron diffraction in situ monitoring of the dislocation density during martensitic transformation in a stainless steel [J]. Scr. Mater., 2013, 68: 506
doi: 10.1016/j.scriptamat.2012.11.031
43 Liang X Z, Dodge M F, Kabra S, et al. Effect of hydrogen charging on dislocation multiplication in pre-strained super duplex stainless steel [J]. Scr. Mater., 2018, 143: 20
doi: 10.1016/j.scriptamat.2017.09.001
44 Gao Y B, Ding Y T, Chen J J, et al. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy [J]. Mater. Sci. Eng., 2019, A767: 138361
45 Taylor G I. The mechanism of plastic deformation of crystals. Part I. Theoretical [J]. Proc. Roy. Soc. London, 1934, 145A: 362
46 Mao W M. Crystallographic Texture and Anisotropy of Metallic Materials [M]. Beijing: Science Press, 2002: 41
毛卫民. 金属材料的晶体学织构与各向异性 [M]. 北京: 科学出版社, 2002: 41
[1] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[2] Hailong QIN,Ruiyao ZHANG,Zhongnan BI,Lee Tung Lik,Hongbiao DONG,Jinhui DU,Ji ZHANG. Study on the Evolution of Residual Stress During Ageing Treatment in a GH4169 Alloy Disk[J]. 金属学报, 2019, 55(8): 997-1007.
[3] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[4] Pingguang XU,Jiang YIN,Shuyan ZHANG. TENSILE DEFORMATION BEHAVIOR OF HYDROGEN CHARGED ULTRAHIGH STRENGTH STEEL STUDIED BY IN SITU NEUTRON DIFFRACTION[J]. 金属学报, 2015, 51(11): 1297-1305.
[5] XU Pingguang; TOMOTA Yo. Progress in Materials Characterization Technique Based on in Situ Neutron Diffraction[J]. 金属学报, 2006, 42(7): 681-688 .
No Suggested Reading articles found!