Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (1): 28-44    DOI: 10.11900/0412.1961.2021.00227
Overview Current Issue | Archive | Adv Search |
Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process
ZHU Miaoyong(), DENG Zhiyin
School of Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article: 

ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process. Acta Metall Sin, 2022, 58(1): 28-44.

Download:  HTML  PDF(2516KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The problem of inclusions is one of the key concerns in the production process of high-quality special steel grades. This study summarized the main inclusion types, and their formation, evolution, and removal mechanisms during the secondary refining process. Meanwhile, combined with studies and practices of the authors, some control measures of inclusions were also discussed. According to this study, the inclusion types after refining are generally different from that of initial deoxidation products, and the formation and evolution of these inclusions are closely related to the dissolved elements in liquid steel, e.g., Ca, Mg, and Ti. Although sometimes the compositions of the inclusions are the same, their different shapes and distributions can also lead to different grades of inclusions depending on the micrographic method. Overall, solid inclusions can be easily removed compared with liquid inclusions, and Al2O3 and MgO·Al2O3 inclusions have a higher removal efficiency in contrast to liquid CaO-Al2O3 system inclusions. Refining slag, refractory, and ladle glaze may have a great impact on the control of trace elements and evolution of inclusions in liquid steel; therefore, suitable slag basicity and slagging operations are important during the refining process. In the case of Al-killed steel grades, slag with a basicity of 4-7 leads to a good deoxidation result, while the slag basicity adjustment during the refining process is generally negative for the control of inclusions in Si-Mn-killed steel grades. Moreover, special attention should be given to the use of CaO-containing refractory. High-quality clean alloys and a suitable alloying stage can also be beneficial for the control of trace elements and the removal of inclusions in the alloys. Furthermore, during the refining process, excessive stirring should be avoided to reduce the flush-off of ladle glaze, and inclusion modification technologies should be considered with precautions. Some methods, e.g., the control of Ca content, the prevention of slag entrainment, and the removal of ladle filler sands, are helpful for the control of micro-inclusions. Recent studies on the inclusions appropriately explained many phenomena in metallurgical processes, indicating some new directions for inclusion control. In the near future, certain mechanisms (e.g., the growth of CaO-Al2O3 inclusions) still need further investigation, and some new technologies are also required to solve the known problems, e.g., complete removal of ladle filler sands.

Key words:  inclusion      steel refining      evolution mechanism      removal mechanism      control technology     
Received:  27 May 2021     
ZTFLH:  TF769  
Fund: National Natural Science Foundation of China(U20A20272)
About author:  ZHU Miaoyong, professor, Tel: (024)83686995, E-mail: myzhu@mail.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00227     OR     https://www.ams.org.cn/EN/Y2022/V58/I1/28

Steel grade (Remark) Deoxidizer Steel plant Production process Type of inclusion Ref.
GCr15 (Bearing steel) Al - - Al2O3-MgO, [2]
CaO-Al2O3-MgO
803J (Bearing steel) Al OVAKO, Sweden EAF→ASEA-SKF→IC CaO-Al2O3-MgO-CaS [3]
SCM420 (Case hardening steel) Sanyo Steel, Japan EAF→LF→RH→CC CaO-MgO-Al2O3 [4]
SCM435 (Case hardening steel) Al Xingtai Steel, China BOF→LF→RH→CC CaO-Al2O3-MgO [5]
(IF steel) Al - BOF→RH→CC Al2O3 [6]
X70 (Pipeline steel) Al NISCO, China BOF→LF→RH→CC CaO-Al2O3-MgO [7]
X80 (Pipeline steel) Al Shougang, China BOF→LF→RH→CC CaO-Al2O3-MgO [8]
(ULC steel) Al-Ti Tata Steel, India - Al2O3-TiO x [9]
ORVAR2M (Tool steel) Al Uddeholm, Sweden EAF→LF→VD→IC CaO-Al2O3-MgO [10]
20CrMnTi (Gear steel) Al-Ti - BOF→LF→CC CaO-Al2O3-MgO-TiO x [11]
(LCAK steel) Al JISCO, China BOF→LF→CSP CaO-Al2O3-MgO-CaS [12]
LX82A (Tire cord steel) Si-Mn Xingtai Steel, China BOF→LF→CC SiO2-MnO-Al2O3, [13]
CaO-SiO2-Al2O3
LX82A (Tire cord steel) Si-Mn Jiyuan Steel, China BOF→LF→CC SiO2-MnO-Al2O3, [14]
CaO-SiO2-Al2O3
60Si2Mn-Cr (Spring steel) Al - BOF→LF→CC CaO-Al2O3-MgO [15]
(Spring steel) Si-Mn Baosteel, China EAF→LF→VD→CC CaO-SiO2-Al2O3 [16]
SAE 9254 Si-Mn ArcelorMittal, Brazil BOF→LF→CC CaO-SiO2-Al2O3 [17]
U75V (Rail steel) Si-Mn Baotou Steel, China BOF→LF→VD→CC CaO-SiO2-Al2O3 [18]
U71Mnk (Rail steel) Si-Mn - BOF→LF→VD→CC CaO-SiO2-Al2O3-MgO [19]
Table 1  Main types of inclusions found in different steel grades at different steel plants[2-19]
Fig.1  Illustration of evolution of inclusions in typical Al-killed steel grades
(a-c) conventional Al-killed steel (d-f) medium-Mn steel (g-k) Ti-bearing alloyed steel (l) Ti-bearing ULC steel (m) Ca treatment
Fig.2  SEM images of typical inclusions in BOF crude steel (a-c) and Al-killed steel (d-h)[23]
(a) CaO-SiO2-FeO inclusion (b) CaO-SiO2-FeO + (Mg, Fe, Mn)O dual-phase inclusion
(c) (Fe, Mn)O inclusion (d) Al2O3 inclusion clusters
(e) singular Al2O3 inclusion (f) MgO·Al2O3 inclusion
(g) CaO-Al2O3(-MgO) inclusion (h) CaO-Al2O3(-MgO) + MgO·Al2O3 dual-phase inclusion
Fig.3  Elemental mappings of a typical Al2O3-(Fe, Mn)O inclusion[34]
Fig.4  Elemental mappings of spinel layer formed at the edge of an alumina inclusion[41]
Fig.5  SEM image (a) and elemental line scans (b) of a MgO·Al2O3 inclusion after Ca treatment[36]
Fig.6  Illustration of a refining ladle in industry
State Inclusion Composition Contact
(mass ratio) angle / (°)
Liquid CaO-Al2O3 36∶64 65
CaO-Al2O3 50∶50 58
CaO-Al2O3 58∶42 54
CaO-Al2O3-SiO2 44∶45∶11 43
CaO-Al2O3-SiO2 40∶40∶20 40
CaO-Al2O3-SiO2 33∶33∶33 36
CaO-SiO2 58∶42 29
CaO-SiO2 50∶50 31
CaO-SiO2 5∶95 47
Solid Al2O3 135
SiO2 115
CaO 132
MgO 125
TiN 132
CaS 87
MgO·Al2O3 134
CaO·2Al2O3 136
Table 2  Contact angles between inclusions and liquid steel at 1600oC[69,70]
Fig.7  Schematics of motion of solid (a) and liquid (b) inclusions at steel-slag interface (t—time, t s—separation time, z—displacement, u —terminal velocity, u I—velocity, z(t)—displacement at time t, r—radius, P—pressure)
Fig.8  Effect of basicity on the value of a A l 2 O 3 2 ? / ? a S i O 2 3 [74] ( a A l 2 O 3 —activity of Al2O3, a S i O 2 —activity of SiO2, w—mass fraction)
Fig.9  Iso-activity lines of oxygen (10-4) in CaO-SiO2-Al2O3-5%MgO system calculated by FactSage (1600oC, R—slag basicity)[48]
Inclusion T m / oC[38] T.[Ca] / T.[O]
CaO·6Al2O3 1850 0.13
CaO·2Al2O3 1750 0.36
CaO·Al2O3 1605 0.63
12CaO·7Al2O3 1455 0.91
3CaO·Al2O3 1535 1.25
Table 3  Melting points (T m)[38] and T.[Ca] / T.[O] values of different inclusions
Fig.10  Iso-activity lines of Al (10-4) in CaO-SiO2-Al2O3-5%MgO system calculated by FactSage (1600oC) [48]
Fig.11  Elemental mappings of a macro-inclusion originated from ladle glaze[102]
Fig.12  SEM image of TiO x -SiO2-Al2O3 base phase in ladle filler sand grains (a) and EDS result (b)[105]
1 Ministry of Industry and Information Technology of the People's Republic of China . Performance of steel industry January-December 2020 [EB/OL]. (2021-02-05)
中华人民共和国工业和信息化部 . 2020年1-12 月钢铁行业运行情况[EB/OL]. (2021-02-05)
2 Chi Y G , Deng Z Y , Zhu M Y . Effect of ladle usage on cleanliness of bearing steel [J]. Metall. Mater. Trans., 2018, 49B: 440
3 Thunman M , Sichen D . Origins of non-metallic inclusions and their chemical development during ladle treatment[J]. Steel Res. Int., 2008, 79: 124
4 Yoshioka T , Nakahata K , Kawamura T , et al . Factors to determine inclusion compositions in molten steel during the secondary refining process of case-hardening steel [J]. ISIJ Int., 2016, 56: 1973
5 Deng Z Y , Zhu M Y . Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process [J]. ISIJ Int., 2013, 53: 450
6 Deng Z Y , Zhu M Y , Zhou Y L , et al . Attachment of alumina on the wall of submerged entry nozzle during continuous casting of Al-killed steel [J]. Metall. Mater. Trans., 2016, 47B: 2015
7 Yang G W , Wang X H , Huang F X , et al . Transient inclusion evolution during RH degassing [J]. Steel Res. Int., 2014, 85: 26
8 Wang X H , Li X G , Li Q , et al . Control of stringer shaped non-metallic inclusions of CaO-Al2O3 system in API X80 linepipe steel plates [J]. Steel Res. Int., 2014, 85: 155
9 Basu S , Choudhary S K , Girase N U . Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel [J]. ISIJ Int., 2004, 44: 1653
10 Song M H , Nzotta M , Sichen D . Study of the formation of non-metallic inclusions by ladle glaze and the effect of slag on inclusion composition using tracer experiments [J]. Steel Res. Int., 2009, 80: 753
11 Deng Z Y , Chen L , Song G D , et al . Formation and evolution of non-metallic inclusions in Ti-bearing Al-killed steel during secondary refining process [J]. Metall. Mater. Trans., 2020, 51B: 173
12 Guo J , Cheng S S , Cheng Z J . Mechanism of non-metallic inclusion formation and modification and their deformation during compact strip production (CSP) process for aluminum-killed steel [J]. ISIJ Int., 2013, 53: 2142
13 Wang K P , Jiang M , Wang X H , et al . Study on formation mechanism of CaO-SiO2-based inclusions in saw wire steel [J]. Metall. Mater. Trans., 2017, 48B: 2961
14 Liu Z H , Song G D , Deng Z Y , et al . Evolution of inclusions in Si-Mn-killed steel during ladle furnace (LF) refining process [J]. Metall. Mater. Trans., 2021, 52B: 1243
15 Tang H Y , Wang Y , Wu T , et al . Characteristics analysis of inclusion of 60Si2Mn-Cr spring steel via experiments and thermodynamic calculations [J]. Ironmak. Steelmak., 2017, 44: 377
16 Lyu S , Ma X D , Huang Z Z , et al . Inclusion characterization and formation mechanisms in spring steel deoxidized by silicon [J]. Metall. Mater. Trans., 2019, 50B: 732
17 de Oliveira Lima E V , Sousa G H , Neto J G C , et al . Thermodynamic simulations and industrial trials applied to inclusion control of SAE 9254 Si-Mn killed steel [J]. Metall. Mater. Trans., 2020, 51B: 2187
18 Qi J H , Wu J , Suo J P , et al . Deoxidization and inclusion control of high speed heavy rail steel [J]. Iron Steel, 2011, 46(3): 18
齐江华, 吴 杰, 索进平 等 . 高速重轨钢的脱氧与夹杂物控制 [J]. 钢铁, 2011, 46(3): 18
19 Zhang H , Liu C S , Lin Q , et al . Formation of plastic inclusions in U71Mnk high-speed heavy-rail steel refined by CaO-SiO2-Al2O3-MgO slag [J]. Metall. Mater. Trans., 2019, 50B: 459
20 Kirihara K . Production technology of wire rod for high tensile strength steel cord [J]. Kobelco Technol. Rev., 2011, (30): 62
21 Zhang L F . State of the art in the control of inclusions in tire cord steels—A review [J]. Steel Res. Int., 2006, 77: 158
22 Jiang M , Wang X H , Chen B , et al . Laboratory study on evolution mechanisms of non-metallic inclusions in high strength alloyed steel refined by high basicity slag [J]. ISIJ Int., 2010, 50: 95
23 Deng Z Y , Zhu M Y , Sichen D . Effect of refractory on nonmetallic inclusions in Al-killed steel [J]. Metall. Mater. Trans., 2016, 47B: 3158
24 Kong L Z , Deng Z Y , Zhu M Y . Formation and evolution of non-metallic inclusions in medium Mn steel during secondary refining process [J]. ISIJ Int., 2017, 57: 1537
25 Li J Y , Cheng G G , Ruan Q , et al . Evolution behaviour of nonmetallic inclusions in Ti-bearing 11Cr stainless steel with calcium treatment [J]. Ironmak. Steelmak., 2020, 47: 31
26 Sun M K , Jung I H , Lee H G . Morphology and chemistry of oxide inclusions after Al and Ti complex deoxidation [J]. Met. Mater. Int., 2008, 14: 791
27 Ye G Z , Jönsson P , Lund T . Thermodynamics and kinetics of the modification of Al2O3 inclusions [J]. ISIJ Int., 1996, 36(suppl.): S105
28 Ito Y I , Suda M , Kato Y , et al . Kinetics of shape control of alumina inclusions with calcium treatment in line pipe steel for sour service [J]. ISIJ Int., 1996, 36(suppl.): S148
29 Wakoh M , Sano N . Behavior of alumina inclusions just after deoxidation [J]. ISIJ Int., 2007, 47: 627
30 Beskow K , Sichen D . Experimental study of the nucleation of alumina inclusions in liquid steel [J]. Scand. J. Metall., 2003, 32: 320
31 Van Ende M A , Guo M X , Proost J , et al . Formation and morphology of Al2O3 inclusions at the onset of liquid Fe deoxidation by Al addition [J]. ISIJ Int., 2011, 51: 27
32 Dekkers R , Blanpain B , Wollants P . Crystal growth in liquid steel during secondary metallurgy [J]. Metall. Mater. Trans., 2003, 34B: 161
33 Beskow K , Jia J , Lupis C H P , et al . Chemical characteristics of inclusions formed at various stages during the ladle treatment of steel [J]. Ironmak. Steelmak., 2002, 29: 427
34 Chi Y G , Deng Z Y , Zhu M Y . Formation and evolution of non-metallic inclusions during deoxidation by Al addition in BOF crude steel [J]. Steel Res. Int., 2017, 88: 1600218
35 Park J H , Todoroki H . Control of MgO·Al2O3 spinel inclusions in stainless steels [J]. ISIJ Int., 2010, 50: 1333
36 Yang S F , Wang Q Q , Zhang L F , et al . Formation and modification of MgO·Al2O3-based inclusions in alloy steels [J]. Metall. Mater. Trans., 2012, 43B: 731
37 Liu C Y , Gao X , Ueda S , et al . Composition changes of inclusions by reaction with slag and refractory: A review[J]. ISIJ Int., 2020, 60: 1835
38 Deng Z Y , Liu Z H , Zhu M Y , et al . Formation, evolution and removal of MgO·Al2O3 spinel inclusions in steel [J]. ISIJ Int., 2021, 61: 1
39 Deng Z Y , Cheng L , Chen L , et al . Effect of refractory on nonmetallic inclusions in Si-Mn-killed steel [J]. Steel Res. Int., 2019, 90: 1900268
40 Liu C Y , Yagi M , Gao X , et al . Kinetics of transformation of Al2O3 to MgO·Al2O3 spinel inclusions in Mg-containing steel [J]. Metall. Mater. Trans., 2018, 49B: 113
41 Chi Y G , Deng Z Y , Zhu M Y . Effects of refractory and ladle glaze on evolution of non-metallic inclusions in Al-killed steel [J]. Steel Res. Int., 2017, 88: 1600470
42 Chen C Y , Jiang Z H , Li Y , et al . State of the art in the control of inclusions in tire cord steels and saw wire steels—A review [J]. Steel Res. Int., 2019, 90: 1800547
43 Chen S H , Jiang M , He X F , et al . Top slag refining for inclusion composition transform control in tire cord steel [J]. Int. J. Miner. Metall. Mater., 2012, 19: 490
44 He X F , Wang X H , Chen S H , et al . Inclusion composition control in tyre cord steel by top slag refining [J]. Ironmak. Steelmak., 2014, 41: 676
45 Kang Y B , Lee H G . Inclusions chemistry for Mn/Si deoxidized steels: Thermodynamic predictions and experimental confirmations [J]. ISIJ Int., 2004, 44: 1006
46 Kawakami K , Taniguchi T , Nakashima K , et al . Generation mechanisms of non-metallic inclusions in high-cleanliness steel [J]. Tetsu Hagané, 2007, 93: 743
川上 潔, 谷口 剛, 中島 邦彦 . 高清浄度鋼における介在物の生成起源 [J]. 鉄と鋼, 2007, 93: 743
47 Lyu S , Ma X D , Huang Z Z , et al . Understanding the formation and evolution of oxide inclusions in Si-deoxidized spring steel [J]. Metall. Mater. Trans., 2019, 50B: 1862
48 Liu Z H , Song G D , Deng Z Y , et al . Effect of slag adjustment on inclusions in Si-Mn-killed steel during ladle furnace (LF) refining process [J]. Ironmak. Steelmak., 2021, 48: 839
49 Brabie V . Mechanism of reaction between refractory materials and aluminum deoxidised molten steel [J]. ISIJ Int., 1996, 36(suppl.) : S109
50 Kato Y , Nuri Y . Present state of spinel inclusions in steel and its technological issues [J]. Sanyo Tech. Rep., 1997, 4: 63
加藤 恵之, 塗 嘉夫 . スピネル系介在物に関する従来の知見と今後の技術課題 [J]. 山陽特殊製鋼技報, 1997, 4: 63
51 Mizuno K , Todoroki H , Noda M , et al . Effects of Al and Ca in ferrosilicon alloys for deoxidation on inclusion composition in type 304 stainless steel [J]. Iron Steelmaker, 2001, 28: 93
52 Beskow K , Sichen D . Ladle glaze: major source of oxide inclusions during ladle treatment of steel [J]. Ironmak. Steelmak., 2004, 31: 393
53 Kimura S , Nakajima K , Mizoguchi S . Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels [J]. Metall. Mater. Trans., 2001, 32B: 79
54 Kang Y , Sahebkar B , Scheller P R , et al . Observation on physical growth of nonmetallic inclusion in liquid steel during ladle treatment [J]. Metall. Mater. Trans., 2011, 42B: 522
55 Du G , Li J , Wang Z B , et al . Effect of magnesium addition on behavior of collision and agglomeration between solid inclusion particles on H13 steel melts [J]. Steel Res. Int., 2017, 88: 1600185
56 Yang J , Wang X H , Wang W J , et al . Transformation of non-metal inclusions in ultra-low oxygen wheel steel during refining process [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 860
杨 俊, 王新华, 王万军 等 . 超低氧车轮钢精炼过程非金属夹杂物的转变 [J]. 北京科技大学学报, 2010, 32: 860
57 Deng Z Y , Zhu M Y , Zhong B J , et al . Basicity choice of refining slag for ultra-low oxygen clean steels [A]. Proceedings of the 17th CSM Conference on Steelmaking [C]. Hangzhou: Steelmaking Branch, The Chinese Society for Metals, 2013: 400
邓志银, 朱苗勇, 钟保军 等 . 超低氧洁净钢的精炼渣碱度选择 [A]. 第十七届全国炼钢学术会议论文集 [C]. 杭州: 中国金属学会炼钢分会, 2013: 400
58 Deng Z Y , Zhou Y L , Zhu M Y . Effect of state of inclusions on removal in Al-killed liquid steel [J]. Iron Steel, 2018, 53(1): 34
邓志银, 周业连, 朱苗勇 . 铝镇静钢中夹杂物形态对其去除的影响 [J]. 钢铁, 2018, 53(1): 34
59 Reis B H , Bielefeldt W V , Vilela A C F . Efficiency of inclusion absorption by slags during secondary refining of steel [J]. ISIJ Int., 2014, 54: 1584
60 Xu J , Huang F , Wang X , et al . Investigation on the removal efficiency of inclusions in Al-killed liquid steel in different refining processes [J]. Ironmak. Steelmak., 2017, 44: 455
61 Cheng G , Zhang L F , Ren Y , et al . Evolution of nonmetallic inclusions with varied argon stirring condition during vacuum degassing refining of a bearing steel [J]. Steel Res. Int., 2021, 92: 2000364
62 Nakajima K , Okamura K . Inclusion transfer behavior across molten steel-slag interfaces [A]. Proceedings of the 4th International Conference on Molten Slags and Fluxes [C]. Sendai: ISIJ, 1992: 505
63 Strandh J , Nakajima K , Eriksson R , et al . A mathematical model to study liquid inclusion behavior at the steel-slag interface [J]. ISIJ Int., 2005, 45: 1838
64 Shannon G N , Sridhar S . Modeling Al2O3 inclusion separation across steel-slag interfaces [J]. Scand. J. Metall., 2005, 34: 353
65 Liu C , Yang S F , Li J S , et al . Motion behavior of nonmetallic inclusions at the interface of steel and slag. Part I: Model development, validation, and preliminary analysis [J]. Metall. Mater. Trans., 2016, 47B: 1882
66 Zhou Y L , Deng Z Y , Zhu M Y . Study on the separation process of non-metallic inclusions at the steel-slag interface using water modeling [J]. Int. J. Miner. Metall. Mater., 2017, 24: 627
67 Zhou Y L , Deng Z Y , Zhu M Y . Separation mechanism of solid/liquid inclusions transfer at steel-slag interface [J]. Chin. J. Process Eng., 2018, 18: 96
周业连, 邓志银, 朱苗勇 . 固/液态夹杂物穿过钢渣界面的分离机理 [J]. 过程工程学报, 2018, 18: 96
68 Zhou Y L , Deng Z Y , Zhu M Y . Numerical simulation on separation process of liquid inclusion at steel-slag interface [J]. Iron Steel, 2018, 53(7): 31
周业连, 邓志银, 朱苗勇 . 钢-渣界面液态夹杂物分离过程数值模拟 [J]. 钢铁, 2018, 53(7): 31
69 Ma C S . Practice for low-cost clean steel production [M]. Beijing: Metallurgical Industry Press, 2016: 41
马春生 . 低成本生产洁净钢的实践 [M]. 北京: 冶金工业出版社, 2016: 41
70 Shinozaki N , Echida N , Mukai K , et al . Wettability of Al2O3-MgO, ZrO2-CaO, Al2O3-CaO substrates with molten iron [J]. Tetsu Hagané, 1994, 80: 748
篠崎 信也, 越田 暢夫, 向井 楠宏 等 . Al2O3-MgO系, ZrO2-CaO系およびAl2O3-CaO系基板と溶鉄とのぬれ性 [J]. 鉄と鋼, 1994, 80: 748
71 Ek M , Wu L , Valentin P , et al . Effect of inert gas flow rate on homogenization and inclusion removal in a gas stirred ladle [J]. Steel Res. Int., 2010, 81: 1056
72 Suito H , Inoue R . Thermodynamics on control of inclusions composition in ultraclean steels [J]. ISIJ Int., 1996, 36: 528
73 Björklund J , Andersson M , Jönsson P . Equilibrium between slag, steel and inclusions during ladle treatment: Comparison with production data [J]. Ironmak. Steelmak., 2007, 34: 312
74 Deng Z Y , Zhu M Y . Deoxidation mechanism of Al-killed steel during industrial refining process [J]. ISIJ Int., 2014, 54: 1498
75 Wang Q , He S P . Optimization of LF refining process and slag for low carbon aluminum containing steel [J]. J. Univ. Sci. Technol. Beijing, 2007, 29(suppl.1): 14
王 谦, 何生平 . 低碳含铝钢LF炉精炼工艺及精炼渣的优化 [J]. 北京科技大学学报, 2007, 29(): 14
76 Turkdogan E T . Equilibrium and non-equilibrium states of reactions in steelmaking [A]. Proceedings of the Ethem T. Turkdogan Symposium: Fundamentals and Analysis of New and Emerging Steelmaking Technologies [C]. Pittsburgh, PA: Iron and Steel Society, 1994: 253
77 Wang K P , Jiang M , Wang X H , et al . Formation mechanism of CaO-SiO2-Al2O3-(MgO) inclusions in Si-Mn-killed steel with limited aluminum content during the low basicity slag refining [J]. Metall. Mater. Trans., 2016, 47B: 282
78 Guo C B , Ling H T , Zhang L F , et al . Effect of slag basicity adjusting on inclusions in tire cord steels during ladle furnace refining process [J]. Metall. Res. Technol., 2017, 114: 602
79 Li Y , Chen C Y , Jiang Z H , et al . Application of alkali oxides in LF refining slag for enhancing inclusion removal in C96V saw wire steel [J]. ISIJ Int., 2018, 58: 1232
80 Yang X M , Shi C B , Zhang M , et al . A thermodynamic model of sulfur distribution ratio between CaO-SiO2-MgO-FeO-MnO-Al2O3 slags and molten steel during LF refining process based on the ion and molecule coexistence theory [J]. Metall. Mater. Trans., 2011, 42B: 1150
81 Deng Z Y , Zhu M Y , Zhong B J , et al . Effect of deoxidation methods on inclusions in steel [J]. J. Univ. Sci. Technol. Beijing, 2012, 34: 1256
邓志银, 朱苗勇, 钟保军 等 . 不同脱氧方式对钢中夹杂物的影响 [J]. 北京科技大学学报, 2012, 34: 1256
82 Pande M M , Guo M , Guo X , et al . Ferroalloy quality and steel cleanliness [J]. Ironmak. Steelmak., 2010, 37: 502
83 Deng Z Y , Ge W Y , Hu B W , et al . Effect of alloying on inclusions in Al-killed steel by a ferrochromium alloy [J]. Iron Steel, 2019, 54(10): 30
邓志银, 戈文英, 胡博文 等 . 合金化对铝镇静钢中夹杂物的影响 [J]. 钢铁, 2019, 54(10): 30
84 Lund T , Ölund L . Improving production, control and properties of bearing steels intended for demanding applications [A]. Advances in the Production and Use of Steel with Improved Internal Cleanliness [C]. West Conshohocken, PA: ASTM International, 1999: 32
85 Sun B , Zhang L M , Wu Y G , et al . Thermodynamic analysis of calcium treatment for SPHC steel in Masteel [J]. China Metall., 2017, 27(1): 50
孙 波, 张良明, 吴耀光 等 . 马钢SPHC钢钙处理的热力学分析 [J]. 中国冶金, 2017, 27(1): 50
86 Zhang C J , Cai K K , Yuan W X . Study on sulfide inclusions and effect of calcium treatment for pipeline steel [J]. Iron Steel, 2006, 41(8): 31
张彩军, 蔡开科, 袁伟霞 . 管线钢硫化物夹杂及钙处理效果研究 [J]. 钢铁, 2006, 41(8): 31
87 Faulring G M , Farrell J W , Hilty D C . Steel flow through nozzles: Influence of calcium [J]. Ironmak. Steelmak., 1980, 7: 14
88 Choudhary S K , Ghosh A . Thermodynamic evaluation of formation of oxide-sulfide duplex inclusions in steel [J]. ISIJ Int., 2008, 48: 1552
89 Geldenhuis J M A , Pistorius P C . Minimisation of calcium additions to low carbon steel grades [J]. Ironmak. Steelmak., 2000, 27: 442
90 Deng Z Y , Zhu M Y . A new double calcium treatment method for clean steel refining [J]. Steel Res. Int., 2013, 84: 519
91 Carneiro R A , Ratnapuli R C , de Freitas Cunha Lins V . The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking [J]. Mater. Sci. Eng., 2003, A357: 104
92 Zhang X W , Zhang L F , Yang W , et al . Characterization of the three-dimensional morphology and formation mechanism of inclusions in linepipe steels [J]. Metall. Mater. Trans., 2017, 48B: 701
93 Jian L , Chen W Q , Meng J X , et al . Sulfide shape control in non quenched and tempered steel containing sulphur [J]. Iron Steel, 2006, 41(10): 74
简 龙, 陈伟庆, 孟金霞 等 . 含硫非调质钢中硫化物形态的控制 [J]. 钢铁, 2006, 41(10): 74
94 Hou Z W , Jiang M , Yang E J , et al . Effect of calcium treatment on control of non-metallic inclusions in high quality low oxygen special steel [A]. 7th International Congress on Science and Technology of Steelmaking (ICS 2018) [C]. Venice: Associazione Italiana di Metallurgia, 2018: ICS 063
95 Zou X D , Zhao D P , Sun J C , et al . An integrated study on the evolution of inclusions in EH36 shipbuilding steel with Mg addition: From casting to welding [J]. Metall. Mater. Trans., 2018, 49B: 481
96 Kimura K , Fukumoto S , Shigesato G I , et al . Effect of Mg addition on equiaxed grain formation in ferritic stainless steel [J]. ISIJ Int., 2013, 53: 2167
97 Wang L J , Liu Y Q , Wang Q , et al . Evolution Mechanisms of MgO·Al2O3 inclusions by cerium in spring steel used in fasteners of high-speed railway [J]. ISIJ Int., 2015, 55: 970
98 Huang Y , Cheng G G , Li S J , et al . Effect of cerium on the behavior of inclusions in H13 steel [J]. Steel Res. Int., 2018, 89: 1800371
99 Liu Z H , Qin F T . Effect of antioxidant in MgO-C brick on acid soluble aluminum in tire cord steel [J]. Steelmaking, 2020, 36(5): 69
刘宗辉, 秦凤婷 . 钢包MgO-C砖抗氧化剂对帘线钢酸溶铝的影响 [J]. 炼钢, 2020, 36(5): 69
100 Li M , Wang X C , Duan J H , et al . Formation and controlling of Type-D inclusions in bearing steel [J]. Chin. J. Eng., 2018, 40(): 31
李 明, 王新成, 段加恒 等 . 轴承钢中D类夹杂物的形成与控制 [J]. 工程科学学报, 2018, 40(suppl.): 31
101 Deng Z Y , Zhu M Y , Zhong B J , et al . Attachment of liquid calcium aluminate inclusions on inner wall of submerged entry nozzle during continuous casting of calcium-treated steel [J]. ISIJ Int., 2014, 54: 2813
102 Chen L . Study on evolution and control of inclusions in 20CrMnTi gear steel [D]. Shenyang: Northeastern University, 2020
陈 磊 . 20CrMnTi齿轮钢夹杂物演变规律及其控制研究 [D]. 沈阳: 东北大学, 2020
103 Wang H J , Glaser B , Sichen D . Improvement of resistance of MgO-based refractory to slag penetration by in situ spinel formation [J]. Metall. Mater. Trans., 2015, 46B: 749
104 Deng Z Y , Zhu M Y . Analysis on source of MnO/FeO containing macro-inclusions in alloyed steel [J]. Iron Steel, 2018, 53(2): 27
邓志银, 朱苗勇 . 合金钢中MnO/FeO大型夹杂物来源分析 [J]. 钢铁, 2018, 53(2): 27
105 Yang F G , Deng Z Y , Ma Y Q , et al . Analysis of source of macro-inclusions in bloom of bearing steel [J]. J. Iron Steel Res., 2018, 30: 536
杨锋功, 邓志银, 马玉强 等 . 轴承钢铸坯中大型夹杂物来源分析 [J]. 钢铁研究学报, 2018, 30: 536
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[4] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[5] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[6] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[7] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[8] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[9] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[10] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[11] Yu HUANG, Guoguang CHENG, You XIE. Modification Mechanism of Cerium on the Inclusions in Drill Steel[J]. 金属学报, 2018, 54(9): 1253-1261.
[12] Ge MA, Xiurong ZUO, Liang HONG, Yinglun JI, Junyuan DONG, Huihui WANG. Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea[J]. 金属学报, 2018, 54(4): 527-536.
[13] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
[14] Tongbang AN,Zhiling TIAN,Jiguo SHAN,Jinshan WEI. EFFECT OF SHIELDING GAS ON MICROSTRUCTURE AND PERFORMANCE OF 1000 MPa GRADE DEPOSITED METALS[J]. 金属学报, 2015, 51(12): 1489-1499.
[15] Yongwei SUN,Jizhi CHEN,Jun LIU. STUDY ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF 1000 MPa GRADE 0Cr16Ni5Mo STEEL[J]. 金属学报, 2015, 51(11): 1315-1324.
No Suggested Reading articles found!