Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (1): 101-108    DOI: 10.11900/0412.1961.2018.00160
Orginal Article Current Issue | Archive | Adv Search |
Research Progress on the Metal Nanocomposites with Butterfly Wing Hierarchical Structure
Chengzhi YANG, Yu GUAN, Shikun CHEN, Huilan SU(), Di ZHANG()
State Key Laboratory of Metal Matrix Composites, School of Materials Science and
Cite this article: 

Chengzhi YANG, Yu GUAN, Shikun CHEN, Huilan SU, Di ZHANG. Research Progress on the Metal Nanocomposites with Butterfly Wing Hierarchical Structure. Acta Metall Sin, 2019, 55(1): 101-108.

Download:  HTML  PDF(2315KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metal nanocomposites with delicate hierarchical structure (MNDHS), which provide excellent optical and catalytic properties due to their multicomponent and structural functionalization, are of great significance for the design of structural and functional materials as well as the application in the field of environment and energy. Here, butterfly wing template is used as an example to introduce the research progress of MNDHS, including their fabrication, property and potential applications, and then their development in the future is prospected.

Key words:  hierarchical structure      metal nanocomposites      butterfly wing template     
Received:  24 April 2018     
ZTFLH:  TB331  
  TG113  
Fund: Supported by National Natural Science Foundation of China (No.51572169) and Shanghai Science and Technology Committee (Nos.15ZR1422400, 14JC1403300 and 14520710100)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00160     OR     https://www.ams.org.cn/EN/Y2019/V55/I1/101

Fig.1  Optical photographs of different types of butterflies (insets) and microstructures of wing scales(a) Euploea mulciber(b) Troides helena[15](c) Graphium weiskei[16]
Fig.2  Schematic of a typical process to prepare Ag-Au nanocomposites with delicate hierarchical structure using butterfly wing as a template (RT—room temperature, EDA—ethylenediamine)[32]
Fig.3  Schematics of the selectively modified 3D nanoarchitecture of butterfly wings under visible light (a) and infrared (IR) light (b) (In Fig.3a, the edge of each lamella layer is selectively coated with a thin layer of Au; the inset shows the edge portion of one lamella layer that is modified with Au coating. In Fig.3b, the inset shows an enlarged view of the bending of one lamella layer due to the absorption of IR light and a mismatch in thermal expansion between the Au coating and lamella structure)[53]
[1] Srinivasarao M.Nano-optics in the biological world: Beetles, butterflies, birds, and moths[J]. Chem. Rev., 1999, 99: 1935
[2] Foottit R G, Adler P H.Insect Biodiversity: Science and Society[M]. Chichester: John Wiley & Sons, 2009: 1
[3] Potyrailo R A, Ghiradella H, Vertiatchikh A, et al.Morpho butterfly wing scales demonstrate highly selective vapour response[J]. Nat. Photonics, 2007, 1: 123
[4] Zhang W, Tian J L, Wang Y A, et al.Single porous SnO2 microtubes templated from Papilio maacki bristles: New structure towards superior gas sensing[J]. J. Mater. Chem., 2014, 2A: 4543
[5] Niu H, Zhou R, Cheng C, et al.Magnetron sputtering in the creation of photonic nanostructures derived from Sasakia Charonda Formosana-butterfly wings for applied in dye-sensitized solar cells[J]. J. Power Sources, 2016, 325: 598
[6] Tan Y W, Gu J J, Zang X N, et al.Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures[J]. Angew. Chem., 2011, 50: 8307
[7] Tan Y W, Gu J J, Xu L H, et al.High-density hotspots engineered by naturally piled-up subwavelength structures in three-dimensional copper butterfly wing scales for surface-enhanced Raman scattering detection[J]. Adv. Funct. Mater., 2012, 22: 1578
[8] Zhu S M, Yao F, Yin C, et al.Fe2O3/TiO2 photocatalyst of hierarchical structure for H2 production from water under visible light irradiation[J]. Micropor. Mesopor. Mater., 2014, 190: 10
[9] Kang S H, Tai T Y, Fang T H.Replication of butterfly wing microstructures using molding lithography[J]. Curr. Appl. Phys., 2010, 10: 625
[10] Wu F F, Liu L X, Feng L, et al.Improving the sensing performance of double gold gratings by oblique incident light[J]. Nanoscale, 2015, 7: 13026
[11] Fu R R, Liu G Q, Jia C, et al.Fabrication of silver nanoplate hierarchical turreted ordered array and its application in trace analyses[J]. Chem. Commun., 2015, 51: 6609
[12] Schreiber R, Do J, Roller E M, et al.Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds[J]. Nat. Nanotechnol., 2014, 9: 74
[13] Wang H, Min S X, Ma C, et al.Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting[J]. Nat. Commun., 2017, 8: 13592
[14] Zao Y, Chen S J, Yan C, et al.Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering[J]. Thin Solid Films, 2012, 520: 2701
[15] Yan R Y, Chen M, Zhou H, et al.Bio-inspired plasmonic nanoarchitectured hybrid system towards enhanced far red-to-near infrared solar photocatalysis[J]. Sci. Rep., 2016, 6: 20001
[16] Garrett N L, Vukusic P, Ogrin F, et al.Spectroscopy on the wing: Naturally inspired SERS substrates for biochemical analysis[J]. J. Biophotonics, 2009, 2: 157
[17] Song F, Su H L, Han J, et al.Fabrication and good ethanol sensing of biomorphic SnO2 with architecture hierarchy of butterfly wings[J]. Nanotechnology, 2009, 20: 495502
[18] Wang W L, Zhang W, Chen W X, et al.Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method[J]. Opt. Lett., 2013, 38: 169
[19] Parker A R.515 million years of structural colour[J]. J. Opt., 2000, 2A: R15
[20] Biró L P, Bálint Z, Kertész K, et al.Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair[J]. Phys. Rev., 2003, 67E: 021907
[21] Vukusic P, Sambles R, Lawrence C, et al.Sculpted-multilayer optical effects in two species of Papilio butterfly[J]. Appl. Opt., 2001, 40: 1116
[22] Liu N, Guo H C, Fu L W, et al.Three-dimensional photonic metamaterials at optical frequencies[J]. Nat. Mater., 2008, 7: 31
[23] Dong Q, Su H L, Cao W, et al.Biogenic synthesis of hierarchical hybrid nanocomposites and patterning of silver nanoparticles[J]. Mater. Chem. Phys., 2008, 110: 160
[24] Dong Q, Su H L, Zhang D.In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature[J]. J. Phys. Chem., 2005, 109B: 17429
[25] Huang J Y, Wang X D, Wang Z L.Controlled replication of butterfly wings for achieving tunable photonic properties[J]. Nano Lett., 2006, 6: 2325
[26] Zhang W, Zhang D, Fan T X, et al.Novel photoanode structure templated from butterfly wing scales[J]. Chem. Mater., 2009, 21: 33
[27] Zhu Y, Su H L, Chen Y F, et al.A facile synthesis of PdO-decorated SnO2 nanocomposites with open porous hierarchical architectures for gas sensors[J]. J. Am. Ceram. Soc., 2016, 99: 3770
[28] Tian J L, Zhang W, Gu J J, et al.Bioinspired Au-CuS coupled photothermal materials: Enhanced infrared absorption and photothermal conversion from butterfly wings[J]. Nano Energy, 2015, 17: 52
[29] Chen J J, Su H L, Song F, et al.Bioinspired Au/TiO2 photocatalyst derived from butterfly wing (Papilio Paris)[J]. J. Colloid Interf. Sci., 2012, 370: 117
[30] Mu Z D, Zhao X W, Xie Z Y, et al.In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS)[J]. J. Mater. Chem., 2013, 1B: 1607
[31] Guan Y, Yang C Z, Su H L, et al.Controllable synthesis of nano Ag-Au composites mimicking fine hierarchical structure of butterfly wings[J]. Acta Mater. Compos. Sin., 2018, 35: 242(关玉, 杨诚智, 苏慧兰等. 蝶翅精细分级结构纳米Ag-Au/蝶翅复合材料的可控制备[J]. 复合材料学报, 2018, 35: 242)
[32] Guan Y.Controllable synthesis of Ag-Au nanocomposites mimicking micro-nano structure of butterfly wings and research of SERS property [D]. Shanghai: Shanghai Jiao Tong University, 2018(关玉. 基于蝶翅微纳结构金银纳米复合材料的可控制备及SERS性能研究 [D]. 上海: 上海交通大学, 2018)
[33] Cecchini M P, Turek V A, Paget J, et al.Self-assembled nanoparticle arrays for multiphase trace analyte detection[J]. Nat. Mater., 2013, 12: 165
[34] Lee S J, Morrill A R, Moskovits M.Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc., 2006, 128: 2200
[35] Pazos-Perez N, Wagner C S, Romo-Herrera J M, et al. Organized plasmonic clusters with high coordination number and extraordinary enhancement in Surface-Enhanced Raman Scattering (SERS)[J]. Angew. Chem., 2012, 51: 12688
[36] White II G V, Provost M G, Kitchens C L. Fractionation of surface-modified gold nanorods using gas-expanded liquids[J]. Ind. Eng. Chem. Res., 2012, 51: 5181
[37] Liu B Y, Zhang W, Lv H M, et al.Novel Ag decorated biomorphic SnO2 inspired by natural 3D nanostructures as SERS substrates[J]. Mater. Lett., 2012, 74: 43
[38] Koon D W, Crawford A B.Insect thin films as sun blocks, not solar collectors[J]. Appl. Opt., 2000, 39: 2496
[39] Tian J L, Zhang W, Fang X T, et al.Coupling of plasmon and 3D antireflection quasi-photonic crystal structure for enhancement infrared absorption[J]. J. Mater. Chem., 2015, 3C: 1672
[40] Jiang T F, Xie T F, Chen L P, et al.Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance[J]. Nanoscale, 2013, 5: 2938
[41] Mahmoud M A, Qian W, El-Sayed M A. Following charge separation on the nanoscale in Cu2O-Au nanoframe hollow nanoparticles[J]. Nano Lett., 2011, 11: 3285
[42] Jiang W Y, Bai S M, Wang L J, et al.Integration of multiple plasmonic and co-catalyst nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution[J]. Small, 2016, 12: 1640
[43] Liu D Q, Zhang F, Fan T X.The surface enhanced Raman scattering performance of three-dimensional structures of butterfly with silver nano-particles[J]. J. Shandong Univ.(Eng. Sci.), 2016, 46(1): 93(刘德琦, 张帆, 范同祥. 蝶翅结构负载银颗粒表面增强拉曼散射性能[J]. 山东大学学报(工学版), 2016, 46(1): 93)
[44] Tan Y W.Research on synthesis and photoresponse property of metallic functional micro/nano structures mimicking butterfly wing scales [D]. Shanghai: Shanghai Jiao Tong University, 2013(谭勇文. 仿蝶翅微纳结构金属功能材料的制备及光响应特性研究 [D]. 上海: 上海交通大学, 2013)
[45] Chen J J, Su H L, You X L, et al.3D TiO2 submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation[J]. Mater. Res. Bull., 2014, 49: 560
[46] Bai W S, Nie F, Zheng J B, et al.Novel silver nanoparticle-manganese oxyhydroxide-graphene oxide nanocomposite prepared by modified silver mirror reaction and its application for electrochemical sensing[J]. ACS Appl. Mater. Interfaces, 2014, 6: 5439
[47] Wang L, Zhang Y Y, Cheng C S, et al.A highly sensitive electrochemical biosensor for evaluation of oxidative stress based on the nanointerface of graphene nanocomposites blended with gold, Fe3O4, and platinum nanoparticles[J]. ACS Appl. Mater. Interfaces, 2015, 7: 5226
[48] Mohammadi A R, Graham T C M, Bennington C P J, et al. Development of a compensated capacitive pressure and temperature sensor using adhesive bonding and chemical-resistant coating for multiphase chemical reactors[J]. Sens. Actuators, 2010, 163A: 471
[49] Zheng X L, Guo D W, Shao Y L, et al.Photochemical modification of an optical fiber tip with a silver nanoparticle film: A SERS chemical sensor[J]. Langmuir, 2008, 24: 4394
[50] Zang X N, Gu J Y, Zhu S J, et al.Tunable optical photonic devices made from moth wing scales: A way to enlarge natural functional structures' pool[J]. J. Mater. Chem., 2011, 21: 13913
[51] Yang Q Q, Zhu S M, Peng W H, et al.Bioinspired fabrication of hierarchically structured, pH-tunable photonic crystals with unique transition[J]. ACS Nano, 2013, 7: 4911
[52] Lu T, Zhu S M, Ma J, et al.Bioinspired thermoresponsive photonic polymers with hierarchical structures and their unique properties[J]. Macromol. Rapid Commun., 2015, 36: 1722
[53] Zhang F Y, Shen Q C, Shi X D, et al.Infrared detection based on localized modification of Morpho butterfly wings[J]. Adv. Mater., 2015, 27: 1077
[54] Pris A D, Utturkar Y, Surman C, et al.Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures[J]. Nat. Photonics, 2012, 6: 195
[55] Chen J J, Su H L, Liu Y J, et al.Efficient photochemical hydrogen production under visible-light over artificial photosynthetic systems[J]. Int. J. Hydrogen Energy, 2013, 38: 8639
[1] . Enhanced plasticity of bulk metallic glass composite containing as-cast in situ formed ductile phase dendrite dispersions[J]. 金属学报, 2006, 42(3): 331-336 .
[2] . [J]. 金属学报, 2002, 38(9): 994-997 .
[3] . [J]. 金属学报, 2002, 38(6): 621-624 .
[4] . [J]. 金属学报, 2002, 38(4): 381-384 .
[5] . [J]. 金属学报, 2002, 38(4): 376-380 .
[6] . [J]. 金属学报, 2001, 37(2): 207-211 .
No Suggested Reading articles found!