|
|
A THREE-DIMENSIONAL CELLULAR AUTOMATON SIMULATION FOR DENDRITIC GROWTH |
JIANG Hongxiang, ZHAO Jiuzhou |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article:
JIANG Hongxiang ZHAO Jiuzhou. A THREE-DIMENSIONAL CELLULAR AUTOMATON SIMULATION FOR DENDRITIC GROWTH. Acta Metall Sin, 2011, 47(9): 1099-1104.
|
Abstract Perhaps dendrite is the most observed solidification microstructure of many metallic materials. The dendritic morphologies show a dominating effect on the performance of casting products. A lot of work has been carried out to investigate the formation mechanism of dendritic microstructure. It is found that the development of dendritic microstructures is a complicated process controlled by the interplay of many factors such as thermal and solute transfer, capillary $etc$. Cellular automaton (CA) can simulate the solidification process with a high computational efficiency, thus, attracts great attentions. In recent years, progress has been made on the two dimensional CA models for the solidification microstructure formation. But up to date researches on three dimensional CA model are very limited. A combined cellular automaton-finite difference (CA-FD) model for the three dimensional simulation of dendritic growth was developed in this paper. Simulations were performed to investigate the dendritic growth in an undercooled Al-Cu alloy as well as in a directionally solidified Al-Cu alloy. The numerical results showed clearly the development of the free dendrite in the undercooled melt and the microstructure evolution in the directionally solidified alloy and agreed well with the theoretical predictions and the experimental results.
|
Received: 20 January 2011
|
Fund: Supported by National Natural Science Foundation of China (Nos.u0837601, 51071159 and 51031003) |
[1] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48: 43[2] Gaumann M, Trivedi R, Kurz W. Mater Sci Eng, 1997; A226–228: 763[3] Liu Z Y, Xu Q Y, Liu B C. J Tsinghua Univ (Sci Tech), 2007; 47: 1253(刘志勇, 许庆彦, 柳百成. 清华大学学报(自然科学版), 2007; 47: 1253)[4] Rappaz M, Gandin Ch A. Acta Mater, 1993; 41: 345[5] Gandin Ch A, Desbiolles J L, Rappaz M. Metall Mater Trans, 1999; 30A: 3153[6] Pan S Y, Zhu M F. Acta Phys Sin, 2009; 58: S278(潘诗琰, 朱鸣芳. 物理学报, 2009; 58: S278)[7] Gandin Ch A, Rappaz M. Acta Mater, 1994; 42: 2233[8] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436[9] Zhu M F, Lee S Y, Hong C P. Phys Rev, 2004; 69E: 1[10] Spittle A, Brown S G R. J Mater Sci, 1995; 30: 3989[11] Dong H B, Lee P D. Acta Mater, 2005; 53: 659[12] Gandin Ch A, Rappaz M. Acta Mater, 1997; 45: 2187[13] Wang W, Lee P D, McLean M. Acta Mater, 2003; 51: 2971[14] Xu L, Guo H M, Yang X J. Foundry, 2005; 54: 575(许林, 郭洪民, 杨湘杰. 铸造, 2005; 54: 575)[15] Pan S Y, Zhu M F. Acta Mater, 2010; 58: 340[16] Steinbach I. Acta Mater, 2008; 56: 4965[17] Nastac L. Acta Mater, 1999; 47: 4253[18] Beckermann C, Diepers H J, Steinbach I, Karma A, Tong X. J Comput Phys, 1999; 154: 468[19] Wheeler A A, Boettinger W J, McFadden G B. Phys Rev, 1992; 45A: 7424[20] Beltran–Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471[21] Hu H Q. Theories of Metal Solidification. 2nd Ed. Beijing: Mechanical Industry Press, 2000: 110(胡汉起. 金属凝固原理. 第二版. 北京: 机械工业出版社, 2000: 110)[22] Scheil E. Z Metallk, 1942; 34: 70[23] Huang W D, Geng X G, Zhou Y H. J Cryst Growth, 1993; 134: 105[24] Lin X, Huang W, Feng J, Li T, Zhou Y. Acta Mater, 1999; 47: 3271[25] ¨Ust¨un E, C¸ad?rl? E, Kaya H. J Phys, 2006; 18: 7825[26] Hunt J D, Lu S Z. Metall Mater Trans, 1996; 27A: 611[27] Trivedi R. Metall Trans, 1984; 15A: 977[28] Li L X, Lin X, Wang M, Huang W D. Foundry Technol, 2008; 29: 891(李林蓄, 林 鑫, 王猛, 黄卫东. 铸造技术, 2008; 29: 891)[29] Qu M, Liu L, Tang F T, Fu H Z. Chin J Nonferrous Met, 2008; 18: 282(屈敏, 刘林, 唐峰涛, 傅恒志. 中国有色金属学报, 2008; 18: 282) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|