Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 513-519    DOI: 10.3724/SP.J.1037.2010.00550
论文 Current Issue | Archive | Adv Search |
EFFECT OF TEMPERING TEMPERATURE ON LOW TEMPERATURE IMPACT TOUGHNESS OF A LOW CARBON Mn-SERIES BAINITIC STEEL
GAO Guhui ZHANG Han BAI Bingzhe
Key Laboratory of Advanced Materials of Ministry of Education, Department of Material Science and Engineering, Tsinghua University, Beijing 100084
Cite this article: 

GAO Guhui ZHANG Han BAI Bingzhe. EFFECT OF TEMPERING TEMPERATURE ON LOW TEMPERATURE IMPACT TOUGHNESS OF A LOW CARBON Mn-SERIES BAINITIC STEEL. Acta Metall Sin, 2011, 47(5): 513-519.

Download:  PDF(1408KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to reduce the cost of alloying elements, low carbon Mn series bainitic steels have been developed. The effect of tempering temperature on the microstructure and low temperature impact toughness of a low carbon Mn-series steel has been investigated in the present study. The as rolled steel plate samples with 30 mm thickness were tempered from 280 ℃ to 600 ℃ for 2 h. Metallographic microstructure show that the< microstructure of the as-rolled steel is mostly bainite laths. Bainite laths start to merge and broaden after tempering at 460 ℃, and quasi--polygonal ferrite structures could be revealed after tempering at 600 ℃. Compared with the as-rolled steel, after tempering at 460 ℃, the yield strength of the steel changes slightly, remaining 725 MPa, while the Charpy absorbed energy at $-$40 ℃ increases from 38 J to 146 J, and the ductile-brittle transition temperature (DBTT) decreases from -18 ℃ to -48 ℃. The EBSD and TEM results indicate that the improvement of low temperature impact toughness after tempering at 460 ℃ is caused by the increase of fraction of high angle boundaries and the decrease of effective grain size during the recovery process of bainite laths.
Key words:  low carbon bainitic steel      tempering microstructure      low temperature impact toughness      recovery process      microstructure refinement     
Received:  15 October 2010     
ZTFLH: 

TG146.2

 
Fund: 

Supported by Science and Technology Project of Bejing (No.D08050303450804)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00550     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/513

[1] Thompson S W, Colvin D J, Krauss G. Metall Trans, 1990; 21A: 1493

[2] Park K T, Kim Y S, Lee J G. Mater Sci Eng, 2000; A293: 165

[3] Feng C. PhD Thesis, Tsinghua University, Beijing, 2010

(冯春. 清华大学博士学位论文, 北京, 2010)

[4] Feng C, Fang H S, Bai B Z, Zheng Y K. Acta Metall Sin, 2010; 46: 473

(冯春, 方鸿生, 白秉哲, 郑燕康. 金属学报, 2010; 46: 473)

[5] Yoo J Y, Choo W Y, ParkTW, KimYW. ISIJ Int, 1995; 35: 1034

[6] Dhua S K, Ray A, Sarma D S. Mater Sci Eng, 2001; A318: 197

[7] Andrzej K L. J Mater Sci Technol, 2000; 106: 212

[8] Marder A R, Krauss G. Trans ASM, 1967; 60: 651

[9] Zhu K Y, Bouaziza Olivier, Oberbilliga Carla, Huang M X. Mater Sci Eng, 2010; A527: 6614

[10] Naylor J P, Blondeau R. Metall Trans, 1976; 7A: 891

[11] Shin S Y, Hong S M, Bae J H, Kim K, Lee S. Metall Mater Trans, 2009; 40A: 2333

[12] Takamura J, Mizoguchi S. Proc 6th Int Iron Steel Congr, Nagoya: ISIJ, 1990: 591

[13] Han S Y, Shin S Y, Seo C H, Lee H, Bae J H, Kim K, Lee S, Kim N J. Metall Mater Trans, 2009; 40A: 1851

[14] Wu H B, Shang C J, Yang S W, Hou H X, Ma Y P, Yu G L. Acta Metall Sin, 2004; 11: 1143

(武会宾, 尚成嘉, 杨善武, 侯华兴, 马玉璞, 于功利. 金属学报, 2004; 11: 1143)

[15] Dunn C G, Daniels F W. Trans AIME, 1951; 191: 147
[1] Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel[J]. 金属学报, 2018, 54(1): 11-20.
[2] Xuelin WANG,Liming DONG,Weiwei YANG,Yu ZHANG,Xuemin WANG,Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. 金属学报, 2016, 52(6): 649-660.
[3] LAN Liangyun QIU Chunlin ZHAO Dewen LI Canming GAO Xiuhua DU Linxiu. MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB–REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL[J]. 金属学报, 2011, 47(8): 1046-1054.
[4] LI Longfei LI Wei SUN Zuqing YANG Wangyue. MICROSTRUCTURE REFINEMENT OF EUTECTOID STEEL BASED ON DIVORCED EUTECTOID TRANSFORMATION[J]. 金属学报, 2009, 45(6): 704-710.
[5] CUI Lei YANG Shanwu WANG Shutao GAO Kewei HE Xinlai. EFFECT OF DAMNIFICATION IN RUST LAYER ON CORROSION BEHAVIORS OF LOWCARBON BAINITIC STEEL IN THE ENVIRONMENT CONTAINING Cl[J]. 金属学报, 2009, 45(4): 442-449.
[6] Shu-Tao WANG; Kewei GAO. CORROSION BEHAVIOR AND VARIATION OF APPARENT MECHANICAL PROPERTY OF ONE NEWLY-DEVELOPED LOW CARBON BAINITIC STEEL IN ENVIRONMENT CONTAINING CHLORIDE ION[J]. 金属学报, 2008, 44(9): 1116-1124 .
[7] Liu S F. The influence of cerium addition on the microstructure of AZ91 magnesium alloy and grain refinement mechanism[J]. 金属学报, 2006, 42(4): 443-448 .
[8] ZHANG Mingxing;KANG Mokuang Baotou Institute of Iron and Steel Technology; Noghwestern Polytechnical University; Xian. INFLUENCE OF Si ON MICROSTRUCTURE AND PROPERTIES OF LOW CARBON BAINITIC STEELS[J]. 金属学报, 1993, 29(1): 6-10.
No Suggested Reading articles found!