Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 62-70    DOI:
论文 Current Issue | Archive | Adv Search |
STUDY ON LOW TEMPERATURE TOUGHNESS IMPROVEMENT OF WELDING COARSE GRAIN ZONE OF HULL STEELS BY Ti TREATMENT
YANG Yinhui1;2;3); CHAI Feng2) ; YAN Biao1;3); SU Hang2); YANG Caifu2)
1) School of Materials Science and Engineering; Tongji University; Shanghai 200092
2) Institute of Structure Materials; Central Iron and Steel Research Institute; Beijing 100081
3) Shanghai Key Lab of D$\&$A for Metal-Functional Materials; Tongji University; Shanghai 200092
Cite this article: 

YANG Yinhui CHAI Feng YAN Biao SU Hang YANG Caifu. STUDY ON LOW TEMPERATURE TOUGHNESS IMPROVEMENT OF WELDING COARSE GRAIN ZONE OF HULL STEELS BY Ti TREATMENT. Acta Metall Sin, 2010, 46(1): 62-70.

Download:  PDF(1740KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The welding thermal simulation experiments were carried out on Ti/Al treated steels with different heat inputs by using Gleeble 1500D. The oxide inclusions and microstructures in the two base metals and simulated coarse grain heat affected zones (CGHAZ) were studied by using OM, SEM and EDS. At a higher heat input of 50 kJ/cm the low temperature Charpy impact energy in the CGHAZ of Ti treated steel (TTS) is higher than that of Al treated steel (ATS), and the impact energy of TTS reaches 60 J when the welding heat input was 75 kJ/cm. The dispersed Ti oxide inclusion with good high temperature stability in TTS can promote the nucleation of intragranular ferrite, and the welding heat input of 75 kJ/cm has only little effect on the morphology, composite and size of the inclusion. Whereas the Ti-rich nitride precipitated at the core of Al2O3 dissolved at high temperature, which can't promote acicular ferrite nucleation. The higher low temperature toughness of TTS is related to the formation of intragranular acicular ferrite in the CGHAZ. When t8/5 ranged from 40 s to 100 s, the volume fraction of M-A islands in TTS can be reduced and the ferrite matrix microstructure can be refined by formation of fine intragranular acicular ferrite nucleated at Ti oxide inclusion, and the hardness in the simulated CGHAZ in TTS is lower than that of ATS at the same t8/5 value. Simultaneously, the austenite grain growth became abnormal and the second phase particles, TiN and Nb(C,N), were coarsened in ATS, resulting in bigger austenite grain size than that in TTS.

Key words:  Ti treated steel      low temperature toughness      coarse grain zone      acicular ferrite      Ti oxide     
Received:  29 June 2009     
ZTFLH: 

TG142

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/62

[1] Lee J L. Acta Metall, 1994; 42: 3291
[2] Tomita Y, Saito N, Tsuzuki T, Tokunaga Y, Okamoto K. ISIJ Int, 1994; 34: 829
[3] Song F M, Li Z G, Qian Y H, Shen K. Hot Work Technol, 2006; 35(19): 69
(宋凤明, 李自刚, 钱余海, 沈凯. 热加工工艺, 2006; 35(19): 69)
[4] Chen M A, Wu C S, Yang M, Tang Y M, Wu R J. Acta Metall Sin, 2004; 40: 148
(陈茂爱, 武传松, 杨 敏, 唐逸民, 吴人洁. 金属学报, 2004; 40: 148)

[5] Yamamoto K, Hasegawa T, Takamura J–I. ISIJ Int, 1996; 36: 80
[6] Rlcks R A, Howell P R, Barritte G S. J Mater Sci, 1982; 17: 732
[7] Ishikawa F, Takahashi T, Ochi T. Metall Mater Trans, 1994; 25A: 929
[8] Madariaga I, Romero J L, Guti´errez I. Metall Mater Trans, 1998; 29A: 1003
[9] Lee T–K, Kim H J, Kang B Y, Hwang S K. ISIJ Int, 2000; 40: 1260
[10] Dowling J M, Corbett J M, Kerr H W. Metall Trans, 1986; 17A: 1611.
[11] Shim J H, Oh Y J, Suh J Y, Cho Y W, Shim J D, Byun J S, Lee D N. Acta Mater, 2001; 49: 2115

[12] Kim H–S, Lee H–G, Oh K–S. ISIJ Int, 2002; 42: 1404
[13] Byun J S, Shim J H, Cho Y W, Lee D N. Acta Mater, 2003; 51: 1593
[14] Shim J H, Cho Y W, Chung S H, Shim J D, Lee D N. Acta Mater, 1999; 47: 2751
[15] TianDW, Qian B N, Chen X F, Si C Y. Phys Test Chem Anal–Phys Test, 1994; 30(1): 28
(田德蔚, 钱百年, 陈晓风, 斯重遥. 理化检验--物理分册, 1994; 30(1): 28)

[16] Chen Y T, GuoAM, Wu L X, Zeng J, Li P H. Acta Metall
Sin (Engl Lett), 2006; 19: 65
[17] Fang H S, Bai B Z, Zheng X H, Zheng Y K, Chen X Y, Zhao R F. Acta Metall Sin, 1986; 22: A283
(方鸿生, 白秉哲, 郑秀华, 郑燕康, 陈秀云, 赵如发. 金属学报, 1986; 22: A283)

[18] Chai F, Yang C F, Zhang Y Q, Xu Z. J Iron Steel Res, 2005; 17(1): 42
(柴锋, 杨才福, 张永权, 徐 洲. 钢铁研究学报, 2005; 17(1): 42)

[19] Fang H S, Liu D Y, Xu P G, Bai B Z, Yang Z G. Mater Mech Eng, 2001; 25(6): 1
(方鸿生, 刘东雨, 徐平光, 白秉哲, 杨志刚. 机械工程材料, 2001; 25(6): 1)

[20] Yong Q L. The Second Phase in Iron & Steel. Beijing: Metallurgical Industry Press, 2006: 49
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 49)

[1] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[2] Liming DONG,Li YANG,Jun DAI,Yu ZHANG,Xuelin WANG,Chengjia SHANG. Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe[J]. 金属学报, 2017, 53(6): 657-668.
[3] Fengyu SONG,Yanmei LI,Ping WANG,Fuxian ZHU. EFFECTS OF HEAT INPUT ON THE MICROSTRUC-TURE AND IMPACT TOUGHNESS OF WELD METAL PROCESSED BY A NEW FLUXNOVEL FLUX CORED WIRE WELD[J]. 金属学报, 2016, 52(7): 890-896.
[4] Xuelin WANG,Liming DONG,Weiwei YANG,Yu ZHANG,Xuemin WANG,Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. 金属学报, 2016, 52(6): 649-660.
[5] Changjun WANG,Jianxiong LIANG,Zhenbao LIU,Zhiyong YANG,Xinjun SUN,Qilong YONG. EFFECT OF METASTABLE AUSTENITE ON MECHANI-CAL PROPERTY AND MECHANISM IN CRYOGENICSTEEL APPLIED IN OCEANEERING[J]. 金属学报, 2016, 52(4): 385-393.
[6] Zhenjia XIE,Chengjia SHANG,Wenhao ZHOU,Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. 金属学报, 2016, 52(2): 224-232.
[7] GAO Guhui, GUI Xiaolu, AN Baifeng, TAN Zhunli, BAI Bingzhe, WENG Yuqing. EFFECT OF FINISH COOLING TEMPERATURE ON MICROSTRUCTURE AND LOW TEMPERATURE TOUGHNESS OF Mn-SERIES ULTRA-LOW CARBON HIGH STRENGTH LOW ALLOYED STEEL[J]. 金属学报, 2015, 51(1): 21-30.
[8] ZHANG Pengyan GAO Cairu ZHU Fuxian. MICROSMICROSTRUCTURE AND MECHANICAL PROPERTIES OF SIMULATE FUSION LINE IN EH40 SHIP PLATE STEEL FOR HIGH HEAT INPUT WELDING[J]. 金属学报, 2012, 48(3): 264-270.
[9] HU Zhiyong YANG Chengwei JIANG Min YANG Guangwei WANG Wanjun WANG Xinhua . IN SITU OBSERVATION OF INTRAGRANULAR ACICULAR FERRITE NUCLEATED ON COMPLEX TITANIUM–CONTAINING INCLUSIONS IN TITANIUM DEOXIDIZED STEEL[J]. 金属学报, 2011, 47(8): 971-977.
[10] SHU Wei WANG Xuemin LI Shurui HE Xinlai. NUCLEATION AND GROWTH OF INTRAGRANULAR ACICULAR FERRITE AND ITS EFFECT ON GRAIN REFINEMENT OF THE HEAT-AFFECTED-ZONE[J]. 金属学报, 2011, 47(4): 435-441.
[11] LIU Dongsheng CHENG Binggui LUO Mi. MICROSTRUCTURE AND IMPACT FRACTURE BEHAVIOUR OF HAZ OF F460 HEAVY SHIP PLATE WITH HIGH STRENGTH AND TOUGHNESS[J]. 金属学报, 2011, 47(10): 1233-1240.
[12] SHU Wei WANG Xuemin LI Shurui HE Xinlai. INFLUENCE OF SECOND–PHASE PARTICLES CONTAINING Ti ON MICROSTRUCTURE AND PROPERTIES OF WELD–HEAT–AFFECTED–ZONE OF A MICROALLOY STEEL[J]. 金属学报, 2010, 46(8): 997-1003.
[13] DENG Wei GAO Xiuhua QIN Xiaomei ZHAO Dewen DU Linxiu WANG Guodong. IMPACT FRACTURE BEHAVIOR OF X80 PIPELINE STEEL[J]. 金属学报, 2010, 46(5): 533-540.
[14] GUO Aimin ZOU Dehui YI Lunxiong DONG Hanxiong LI Pinghe LIU K WU Kaiming. EFFECTS OF AGING ON MICROSTRUCTURE AND MECHANICAL PROPERTY OF ULTRALOW CARBON ACICULAR FERRITE STEEL[J]. 金属学报, 2009, 45(4): 390-395.
[15] shen zhuo; Yu-hai Li. INFLUENCE OF SULFUR CONTENT AND MICROSTRUCTURE OF PIPELINE STEELS ON MECHANICAL PROPERTY AND H2S-RESISTANT BEHAVIOR[J]. 金属学报, 2008, 44(2): 215-221 .
No Suggested Reading articles found!