Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 47-51    DOI:
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURAL\, EVOLUTION OF Mn-Si-Cr MEDIUM CARBON STEEL DEFORMED UNDER UNDERCOOLED AUSTENITE STATE
ZHANG Han; BAI Bingzhe
Key Laboratory for Advanced Materials of Ministry of Education; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
Cite this article: 

ZHANG Han BAI Bingzhe. MICROSTRUCTURAL\, EVOLUTION OF Mn-Si-Cr MEDIUM CARBON STEEL DEFORMED UNDER UNDERCOOLED AUSTENITE STATE. Acta Metall Sin, 2010, 46(1): 47-51.

Download:  PDF(964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An appropriate deformation with low strain rate was applied to a Mn-Si-Cr medium carbon steel at undercooled austenite state. The deformation promotes the formation of pro--eutectoid ferrite, but no lamellar pearlite was observed during deformation. The ferrites nucleate at the grain boundary of austenite and inside the austenite grains, grow in nearly equiaxial shape, and finally divide austenite and connect with one another, leading to the formation of carbon-rich austenite zones. With the increase of strain, ferrites can continue to nucleate inside carbon-rich austenite zones, grow and connect so that the carbon-rich austenite zones are divided continuously and their carbon concentration becomes higher. When the carbon concentration is enough high, the prime spheroidized carbides with 0.5-1 μm in diameter begin to precipitate at the edge of carbon-rich austenite zones. The dynamic recovery and recrystallization of ferrite during deformation process make carbon atoms escape from the Cottrell atmosphere, resulting in precipitation of the secondary spheroidized carbides with size of several decade nanometers within ferrite grains.

Key words:  medium carbon steel      pro-eutectoid ferrite      spheroidized carbide      carbon-rich austenite zone     
Received:  27 May 2009     
ZTFLH: 

TG111.2

 
Fund: 

Supported by National Basic Research Program of China (No.2004CB619105)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/47

[1] Sun Z Q, Yang W Y, Qi J J, Hu A M. Mater Sci Eng, 2002; A334: 201
[2] Qi J J, Yang W Y, Sun Z Q. Acta Metall Sin, 2002; 38: 897
(齐俊杰, 杨王玥 , 孙祖庆. 金属学报, 2002; 38: 897)
[3] Huang Q S, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2007; 43: 724
(黄青松, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 724)
[4] Hodgson P D, Hickson M R, Gibbs R K. Scr Mater, 1999; 40: 1179
[5] Hurley P J, Hodgson P D, Muddle B C. Scr Mater, 1999; 40: 433
[6] Hickson M R, Hurley P J, Gibbs R K, Kelly J L, Hodgson P D. Metall Mater Trans, 2002; 33A: 1019
[7] Choi J K, Seo B H, Lee J S, Um K K, Choo W Y. ISIJ Int, 2003; 43: 746
[8] Chen G A, Yang W Y, Sun Z Q. Acta Metall Sin, 2007; 43: 27
(陈国安, 杨王玥 , 孙祖庆. 金属学报, 2007; 43: 27)
[9] Lee Y H; Kwon J S; Lee D L. Mater Sci Forum, 2007; 539–543: 4267
[10] Zheng C W, Xiao N M, Hao L H, Li D Z, Li Y Y. Acta Mater, 2009; 57: 2956
[11] Yang L, Fang H S, Meng Z H. Acta Metall Sin, 1992; 28: 143
(杨柳, 方鸿生, 孟志和. 金属学报, 1992; 28: 143)
[12] Li J, Sun F Y. Acta Metall Sin, 1990; 26: A396
(李箭, 孙福玉. 金属学报, 1990; 26: A396)
[13] Zhou Y, Wu G H. Materials Analysis and Testing Technology—X–ray Diffraction and Electron Microanalysis of Materials. Harbin: Harbin Institute of Technology Press, 2000: 92
(周玉, 武高辉. 材料分析测试技术—材料X射线衍射与电子显微分析. 哈尔滨: 哈尔
滨工业大学出版社, 2000: 92)

[14] Chen G A, Yang W Y, Sun Z Q, Zhang X Y. Acta Metall Sin, 2007; 43: 785
(陈国安, 杨王玥, 孙祖庆, 张湘义. 金属学报, 2007; 43: 785)
[15] Wilde J, Cerezo A, Smith G D W. Scr Mater, 2000; 43: 39
[16] Song R, Ponge D, Raabe D, Kaspar R. Acta Mater, 2005; 53: 845
[17] Shin D H, Kim Y S, Lavernia E J. Acta Mater, 2001; 49: 2387

[1] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
[2] Huidong WU,Chi ZHANG,Wenbo LIU,Zhigang YANG. SIMULATION OF GROWTH KINETICS OF PRO-EUTECTOID FERRITE USING MIXED CONTROL MODEL WITH CONSIDERATION OF DISLOCATION INTERACTION[J]. 金属学报, 2015, 51(9): 1136-1144.
[3] WU Si, LI Xiucheng, ZHANG Juan, SHANG Chengjia. EFFECT OF Nb ON TRANSFORMATION AND MICROSTRUCTURE REFINEMENT IN MEDIUM CARBON STEEL[J]. 金属学报, 2014, 50(4): 400-408.
[4] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. EFFECT OF COOLING PATH ON THE HOLE-EXPANSION PROPERTY OF MEDIUM CARBON STEEL[J]. 金属学报, 2012, 48(4): 435-440.
[5] XIA Yuan YANG Zhigang LI Zhaodong ZHANG Yuduo ZHANG Chi. EFFECT OF HOT DEFORMATION ON KINETICS OF γ→α TRANSFORMATION IN A Fe-0.2C-2Mn ALLOY AND RELATED THEORETICAL ANALYSES[J]. 金属学报, 2012, 48(3): 271-276.
[6] ZHANG Jiwang LU Liantao ZHANG Weihua. ANALYSIS ON FATIGUE PROPERTY OF MICROSHOT PEENED MEDIUM CARBON STEEL[J]. 金属学报, 2009, 45(11): 1378-1383.
[7] . The distribution and diffusion of carbon atoms during deformation of undercooled austenite in medium carbon steel[J]. 金属学报, 2007, 43(8): 785-790 .
[8] ;. Microstructure Evolution of medium carbon steel during deformation of undercooled austenite[J]. 金属学报, 2007, 42(1): 27-34 .
[9] HUI Weijun; TIAN Peng; DONG Han; SU Shihuai; YU Tongren; WENG Yuqing. Influence of Deformation Temperature on the Microstructure Transformation in Medium Carbon Steel[J]. 金属学报, 2005, 41(6): 611-616 .
[10] LIU Yumen;HE Zhirong Xi'an Jiaotong University. SOME CHARCTERISTICS OF MARTENSITE IN MEDIUM CARBON IRON ALLOY[J]. 金属学报, 1989, 25(2): 61-64.
No Suggested Reading articles found!