Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (5): 541-546    DOI:
论文 Current Issue | Archive | Adv Search |
STUDY OF THE CRITICAL TEMPERATURES FOR DELAYED HYDRIDE CRACKING IN N18 ZIRCONIUM ALLOY
SUN Chao 1; TAN Jun1; YING Shihao1; LI Cong2; PENG Qian1; ZHAO Suqiong1
Cite this article: 

SUN Chao TAN Jun YING Shihao LI Cong PENG Qian ZHAO Suqiong. STUDY OF THE CRITICAL TEMPERATURES FOR DELAYED HYDRIDE CRACKING IN N18 ZIRCONIUM ALLOY. Acta Metall Sin, 2009, 45(5): 541-546.

Download:  PDF(662KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zirconium alloys are used extensively in nuclear reactor cores. During their service a part of hydrogen produced through the corrosion reaction of Zr with hot coolant is absorbed by materials. Hydride induced embrittlement significantly influences the in–service performance of the Zr–alloy components. Delayed hydride cracking (DHC) is a localized form of hydride embrittlement, consequently, hydrogen atoms in the solid solution will diffuse into this region ahead of the crack tip subjected to a triaxial state of stress, which may lower the chemical potential of the region. Once the hydrogen concentration in this region reaches the terminal solid solubility (TSS), hydrides will start to form and grow. When the hydrides at the crack tip reach a critical size, the main crack will propagate through this hydrided region. The crack front finally is arrested at the end of the hydrided region by the ductile zirconium matrix, and the whole process repeats itself.
        Most of the investigations on DHC in zirconium alloys are focused on Zr–Nb alloys. Few literatures were found on the subject of DHC in Zr–Sn alloys. The purpose of the present study was to investigate critical temperature for initiating and arresting delayed hydride cracking in Zr–Sn–Nb alloy.
        A critical temperature for DHC study was carried out to determine the critical temperature for initiating and arresting in N18 zirconium alloy (Zr–Sn–Nb alloy). For a given hydrogen concentration of a specimen, the two critical temperatures were observed—a DHC initiation temperature, Tc, at which DHC would initiate when approaching the test temperature from above the terminal solid solubility (Cd) temperature in hydride dissolution and a DHC arrest temperature, Th, obtained by heating the same specimen from Tc after DHC had started. Tc slightly below Th. Both Tc and Th fall below the dissolution solvus temperature and above the precipitation solvus temperature. A theoretical analysis was carried out to quantitatively determine the hydrogen concentration limit and these critical temperatures using the method of Dutton and Plus, a key assumption in the method is that, while the local crack tip stress concentration causes a local enhancement of the hydrogen concentration in solution, the hydride precipitation solvus is unaffected by stress. Good agreements are obtained between measured and predicted values of critical temperatures, which support the Dutton--Plus theory.

Key words:  N18 zirconium alloy      delayed hydride cracking      critical temperature     
Received:  08 October 2008     
ZTFLH: 

TF777.1

 
Fund: 

Supported by National Natural Science Foundation of China (No. 50601024)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I5/541

[1] Yang W D. Nuclear Reactor Material. Beijing: AtomEnergy Press, 2000: 277
(杨文斗. 反应堆材料学. 北京: 原子能出版社, 2000: 277)
[2] Kim Y S, Ahn S B, Cheong Y M. J Alloys Compd, 2007; 429: 221
[3] Shmakov A A, Singh R N, Yan D, Eadie R L, Matvienko Y G. Comput Mater Sci, 2007; 39: 237
[4] Kim S S, Kwon S C, Kim Y S. J Nuclear Mater, 1999; 273: 52
[5] Hui W J, Dong H, Weng Y Q, Shi J, Nie Y H, Chu Z M,Chen W B. Acta Metall Sin, 2004; 40: 561
(惠卫军, 董 瀚, 翁宇庆, 时捷, 聂义宏, 褚作明, 陈蕴博. 金属学报, 2004; 40: 561)
[6] Pan C, Li Z B, Tian Z L, Liang D T, Chu W Y, Qiao L J.J Iron Steel Res, 2000; 12 (Suppl.): 65
(潘 川, 李正邦, 田志凌, 梁东图, 褚武扬, 乔利杰. 钢铁研究学报, 2000; 12 (增刊): 65)
[7] Pan C, Li Z B,Liang D T, Tian Z L, Chu W Y, Qiao L J. Acta Metall Sin, 2001; 37: 296
(潘川, 李正邦, 梁东图, 田志凌, 褚武扬, 乔利杰. 金属学报, 2001; 37: 296)
[8] Gao K W, Wang Y B, Qiao L J, Chu W Y. Sci Chin, 1999;29E: 289
(高克玮, 王燕斌, 乔利杰, 褚武扬. 中国科学, 1999; 29E: 289)
[9] Zhang Y, Chu W Y, Yuan R Z, Wang Y B, Ou Yang S X, Xiao J M. Acta Metall Sin, 1995; 31: 406
(张 跃, 褚武扬, 袁润章, 王燕斌, 欧阳世翕, 肖纪美. 金属学报, 1995; 31: 406)
[10] Meng X, Chen C H, Yao X J, Shi C Y, Wang Y J. Trans Chin Weld Inst, 2002; 23: 21
(孟 鑫, 陈春焕, 姚向军, 史春元, 王亚军. 焊接学报, 2002; 23: 21)
[11] He J Y, Gao K W, Su Y J, Qiao L J, Chu W Y. Acta Metall Sin, 2004; 40: 342
(何健英, 高克玮, 宿彦京, 乔利杰, 褚武扬. 金属学报, 2004; 40: 342)
[12] Liu J Z. Nuclear Structure Materials. Beijing: Chemistry Industry Press, 2007: 143
(刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 143)
[13] Tang J R. Chin J Nuclear Sci Eng, 2003; 23: 266
(唐炯然. 核科学与工程, 2003; 23: 266)
[14] Une K, Ishimoto S. J Nuclear Mater, 2003; 322: 66
[15] Dutton R, Nuttall K, Plus M P, Simpson L A. Metall Trans, 1977; 8A: 1553
[16] Schofield J S, Darby E C, Gee C F. Zirconium in the Nuclear Industry: Thirteenth International Symposium, West Conshohocken: ASTM International, 2002: 339
[17] Shi S Q, Shek G K, Puls M P. J Nuclear Mater, 1995; 218:189

[1] SUN Chao TAN Jun YING Shihao LI Cong PENG Qian ZHAO Suqiong. PREDICTION OF CRITICAL TEMPERATURE FOR DELAYED HYDRIDE CRACKING IN IRRADIATED N18 ZIRCONIUM ALLOY[J]. 金属学报, 2010, 46(7): 805-809.
[2] MAO Dali(The Public Laboratory of State Education Commission for High Temperature Materials and High Temperature Tests; Department of Materials Science; Shanghai Jiaotong University; Shanghai 200030)ITOH Kihao;WADA Hitoshi(National Research Institute for Metals; Tsukuba; Ibaraki 305; Japan). CHARACTERIZATION OF A MULTIFILAMENTARY Nb3Al WIRE FABRICATED BY RAPIDLY HEATING AND RAPIDLY QUENCHING METHOD[J]. 金属学报, 1998, 34(7): 735-741.
No Suggested Reading articles found!