Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (10): 1237-1241    DOI:
论文 Current Issue | Archive | Adv Search |
PHASE–FIELD SIMULATION OF THE EFFECT OF KINETIC ANISOTROPY ON CRYSTAL GROWTH IN UNDERCOOLED MELTS
ZHAO Dawen; LI Jinfu
State Key Laboratory of Metal Matrix Composites; School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai 200240
Cite this article: 

ZHAO DaWen LI Jinfu. PHASE–FIELD SIMULATION OF THE EFFECT OF KINETIC ANISOTROPY ON CRYSTAL GROWTH IN UNDERCOOLED MELTS. Acta Metall Sin, 2009, 45(10): 1237-1241.

Download:  PDF(1300KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Solidification is generally determined by a complex interplay of heat and/or solute diffusion processes, capillary and/or kinetic effects of the solid/liquid interface. Theoretical analysis indicates that the crystal growth morphology and behavior both depend sensitively on the degree of the capillary and kinetic anisotropy. In present, the influences of capillary anisotropy on crystal growth process have been extensively studied, especially simulated by the phase–field model. Unfortunately, the influences of kinetic anisotropy on the crystal growth morphology and behavior are seldom researched. In this paper, the phase–field model was employed to quantitatively simulate the effects of kinetic anisotropy on the crystal growth in undercooled melts. It is illustrated that the selection of the solid/liquid interface morphology is determined by the kinetic anisotropic parameter if the capillary anisotropy s set as zero. With a wak kinetc anisotropy, the melt solidifies in a fractal pattern, during which there s no obvious preferrd growth drection, and any steady–state gowth cannot be detected. As a stong anisotropy becomes greater than 0.02, the interface morphology changes to a dendritic pattern growth along the h110i orientation. Further analysis indicates that the stability parameter ncreases inearly with the increase of inetic anisotropic parameter and is independent of the kinetic coefficient.

Key words:  kinetic anisotropy      fractal growth      dendrite growth      phase--field model      adaptive finite element method     
Received:  24 February 2009     
ZTFLH: 

TG142

 
Fund: 

Supported by National Natural Science Foundation of China (No.50571068)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I10/1237

[1] Langer J S. Directions in Condense Matter. Singapore: World Scientific, 1986: 164
[2] Caginalp G, Fife P. Phys Rev, 1986; 34B: 4940
[3] Karma A, Rappel W J. hys Rev, 1998; 57E: 4323
[4] Karma A, Lee Y H, Plapp M. Phys Rev, 2000; 61E: 3996
[5] Haxhimali T, Karma A, Gonzales F. Nat Mater, 2006; 5: 660
[6] Boettinger W J, Warren J A, Beckermann C. Annu Rev Mater Res, 2002; 32: 163
[7] Li J J, Wang J C, Yang G C. Acta Mater, 2007; 55: 825
[8] Li J J, Wang J C, Yang G C. Acta Phys Sin, 2007; 56: 1514
(李俊杰, 王锦程, 杨根仓. 物理学报, 2007; 56: 1514)
[9] Li J J, Wang J C, Yang G C. J Cryst Growth, 2007; 309: 65
[10] Zhu Y C, Wang J C, Yang G C, Yang Y J. Acta Phys Sin, 2007; 56: 5542
(朱耀产, 王锦程, 杨根仓, 杨玉娟. 物理学报, 2007; 56: 5542)
[11] Zhang R J, Jing T, Liu B C. Acta Mater, 2006; 54: 2235
[12] Cui H B, Guo J J, Su Y Q, Wu S P. Acta Metall Sin, 2007; 43: 907
(崔红保, 郭景杰, 苏彦庆, 吴士平. 金属学报, 2007; 43: 907)
[13] Langer J S. Phys Rev, 1986; 33A: 435
[14] Kessler D A, Levine H. Phys Rev, 1986; 33B: 7867
[15] Amar M B, Pomeau Y. Euro Phys Lett, 1986; 2: 307
[16] Brener E A. Adv Phys, 1991; 40: 53
[17] Zienkiewicz O C, Zhu J Z. Int J Numer Meth Eng, 1987; 24: 337
[18] Zhao D W, Yang G C, Wang J C, Zhu Y C. Prog Nat Sci, 2006; 16: 1009
(赵达文, 杨根仓, 王锦程, 朱耀产. 自然科学进展, 2006; 16: 1009)
[19] Ihle T, Muller–Krumbhaar H. Phys Rev, 1994; 49E: 2972
[20] Mullins W W, Sekerka R F. J Appl Phys, 1963; 34: 323
[21] Mullins W W, Sekerka R F. J Appl Phys, 1964; 35: 444
[22] Langer J S. Rev Mod Phys, 1980; 52: 1

[1] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[2] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
[3] . COMPETITIVE GROWTH IN BI-CRYSTAL OF NI-BASED SUPERALLOYS DURING DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2011, 47(6): 641-648.
[4] ZHOU Shengyin HU Rui JIANG Li LI Jinshan KOU Hongchao CHANG Hui ZHOU Lian. DENDRITE GROWTH IN SOLIDIFICATION OF UNDERCOOLED Co80Pd20 ALLOY[J]. 金属学报, 2011, 47(4): 391-396.
[5] WU Mengwu XIONG Shoumei. MICROSTRUCTURE SIMULATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY BASED ON MODIFIED CA METHOD[J]. 金属学报, 2010, 46(12): 1534-1542.
[6] ZHOU Yizhou JIN Tao SUN Xiaofeng. STRUCTURE EVOLUTION IN DIRECTIONALLY SOLIDIFIED BICRYSTALS OF NICKEL BASE SUPERALLOYS[J]. 金属学报, 2010, 46(11): 1327-1334.
[7] Zhiyong LIU. Modeling of Dendrite Growth for Mg Alloy with Compact Hexagonal Crystal Structure[J]. 金属学报, 2007, 43(4): 367-373 .
No Suggested Reading articles found!