Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (10): 1185-1189    DOI:
论文 Current Issue | Archive | Adv Search |
FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE, BONDING CHARACTERISTIC AND BONDING STRENGTH OF TiN(111)/BN/TiN(111) INTERFACE
NIU Jiangang; WANG Baojun; WANG Cuibiao; TIAN Xiao
College of Quality and Technical Supervision; Hebei University; Baoding 071001
Cite this article: 

NIU Jiangang; WANG Baojun; WANG Cuibiao; TIAN Xiao. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE, BONDING CHARACTERISTIC AND BONDING STRENGTH OF TiN(111)/BN/TiN(111) INTERFACE. Acta Metall Sin, 2009, 45(10): 1185-1189.

Download:  PDF(684KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nanocomposite 'nc–TiN/a–BN' as a representation of the family of superhard nitride–based nanocomposites, which is a nanocomposite thin film material, exhibits a significant hardness enhancement as compared with the pure constituents. In this paper, first–principles calculations were performed to investigate the role of interfaces in the nanocomposite 'nc–TiN/a–BN', to which less attention has been paid up to now. In order to determine theoretically the stable interface configuration in 'nc–TiN/a–BN', 16 possible theoretical TiN(111)/BN/TiN(111) sandwich interface cnfigurations have been constructed based on the stucture characteristic of 'nc–TiN/a–BN'. It is found in this calculation that the mst favorable interface configuration istop–top–BN, which is closely related to each B atom covalently bonding to its tetahedrally coordinated N atoms in it. ts electronic structure is calculated. The calculated results show that the bnds at the interface in 'top–top–BN'configuration are covalent. Its interface bonding strength is higher than that between two 111 crystalline planes in slab TiN or bulk TiN.

Key words:  nanocomposite film      nitride      interface      first principle     
Received:  08 April 2009     
ZTFLH: 

TG146

 
Fund: 

Supported by Scientific Research Project of Hebei Education Department of China (No.z2008304)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I10/1185

[1] Zhao H Y, Fan Q L, Song L X, Shi E W, Hu X F. J Inorg Mater, 2004; 19: 9 (赵红雨, 范秋林, 宋力昕, 施尔畏, 胡行方. 无机材料学报, 2004; 19: 9) [2] Veprek S, Veprek–Heijman M G J, Karvankova P, Prochazka J. Thin Solid Films, 2005; 476: 1 [3] Ma D Y, Wang X, Ma S L, Xu K W. Acta Metall Sin, 2003; 39: 1047 (马大衍, 王昕, 马胜利, 徐可为. 金属学报, 2003; 39: 1047) [4] Veprek S, Niederhofer A, Moto K, Bolom T, Mannling H D, Nesladek P, Dollinger G, Bergmaier A. Surf Coat Technol, 2000; 133–134: 152 [5] Karvankova P, Veprek–Heijman M G J, Zawrah M F, Veprek S. Thin Solid Films, 2004; 467: 133 [6] Karvankova P, Veprek–Heijman M G J, Zindulky O, Bergmaier A, Veprek S. Surf Coat Technol, 2003; 163–164:149 [7] Karvankova P, Veprek–Heijman M G J, Azinovic D, Veprek S. Surf Coat Technol, 2006; 200: 2978 [8] Veprek S, Veprek–Heijman M G J. Surf Coat Technol, 2007; 201: 6064 [9] Hao S Q, Delley B, Stampf C. Phys Rev, 2006; 74B: 035402 [10] Ma D Y, Ma S L, Xu K W, Veprek S. Acta Metall Sin, 2004; 40: 1037 (马大衍, 马胜利, 徐可为, Veprek S. 金属学报, 2004; 40: 1037) [11] Kong M, Hu X P, Dong Y S, Li G Y, Gu M Y. Acta Phys Sin, 2005; 54: 3774 (孔明, 胡晓萍, 董云杉, 李戈扬, 顾明元. 物理学报, 2005; 54: 3774) [12] Hultman L, Bareno J, Flink A, Soderberg H, Larsson K, Petrova V, Oden M, Greene J E, Petrov I. Phys Rev, 2007; 75B: 155437 [13] Hao S Q, Delley B, Veprek S, Stampf C. Phys Rev Lett, 2006; 97: 086102 [14] Gall D, Kodambaka S, Wall M A, Petrov I, Greene J E. J Appl Phys, 2003; 93: 9086 [15] Segall M D, Lindan P J D, Probert M J. J Phys Condens Matter, 2002; 14: 2717
[1] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[2] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[7] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[8] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[9] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[10] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[11] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[12] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
[13] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[14] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[15] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
No Suggested Reading articles found!