Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (1): 124-128    DOI:
论文 Current Issue | Archive | Adv Search |
MULTI-STEP NUMERICAL SIMULATION OF BULK METAL FORMING PROCESSES BASED ON DEFORMATION THEORY OF PLASTICITY
WANG Peng;DONG Xianghuai;FU Lijun
Department of Plasticity Technology; Shanghai Jiaotong University; Shanghai 200030
Cite this article: 

WANG Peng DONG Xianghuai FU Lijun. MULTI-STEP NUMERICAL SIMULATION OF BULK METAL FORMING PROCESSES BASED ON DEFORMATION THEORY OF PLASTICITY. Acta Metall Sin, 2009, 45(1): 124-128.

Download:  PDF(920KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The bulk metal forming processes are calculated and analyzed by using a multi-step finite element method (FEM) based on deformation theory of plasticity. In this method, FEM solution is implemented to minimize approximated plastic potential in static equilibrium by constraint variation principle, for incompressible rigid-plastic materials. The multi-step simulation deals with the fictitious sliding constraints for intermediate configurations and iterations step by step along the deformation path, considering the contact and deformation history, which could provide rapid analysis for more complicated bulk forming problems. The one-step and multi-step forward simulations of several typical bulk metal forming problems are performed by this method, the calculated results of which are compared with those obtained by incremental FEM. The results indicate: multi-step FEM simulation of the bulk metal forming processes could give the reasonable answers with a small amount of computing time, the errors of which are less 10% compared with those of incremental FEM.

Key words:  bulk metal forming      finite element method      multi--step simulation      deformation theory of plasticity      rigid--plastic materials     
Received:  02 July 2008     
ZTFLH: 

TG316

 
Fund: 

Supported by National Natural Science Foundation of China (No.50575143)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I1/124

[1] Budiansky B. J Appl Mech, 1959; 26: 259
[2] Sewell M J. J Mech Phys Solids, 1974; 22: 469
[3] Levy S, Shih C F, Wilkinson J P D, Stine P, McWilson R C. ASTM STP 647, 1978: 238
[4] Guo Y Q, Bstoz J L, Detraux P. Int J Numer Methods Eng, 1990; 30: 1385
[5] Kim S H, Kim S H, Huh H. J Mater Process Technol, 2001; 113: 779
[6] Lee C H, Kobayashi S. J Eng Ind, 1973; 95: 865
[7] Rong L, Nie Z R, Zuo T Y. Acta Metall Sin, 2006; 42: 394
(荣莉, 聂祚仁, 左铁镛. 金属学报, 2006; 42: 394)
[8] Hodge P G, White G N, Providence R I. J Appl Mech, 1950; 17: 180
[9] Chung K, Alexandrov S. Appl Mech Rev, 2007; 60: 316
[10] Chung K, Richmond O. Int J Plast, 1993; 9: 907
[11] Richmonda O, Alexandrov S. J Mech Phys Solids, 2000; 48: 1735
[12] Chung K, Lee W, Richmond O, Alexandrov S. Int J Plast, 2005; 21: 1322
[13] Boisse P, Ladeveze P, Poss M, Rougee P. Int J Plast, 1991; 7: 65
[14] Abdali A, Benkrid K, Bussy P. J Mater Process Technol, 1996; 60: 255
[15] Jourdan F, Bussy P. Comput Meth Appl Mech Eng, 2000; 190: 1245
[16] Liu B S, Liu Y. J Plast Eng, 1999; 6(2): 17
(柳葆生, 刘渝. 塑性工程学报, 1999; 6(2):17)
[17] Simo J C, Ortiz M. Comput Meth Appl Mech Eng, 1985; 49: 221
[18] Brunig M. Comput Struct, 1998; 69: 117
[19] Wang P, Dong X H, Fu L J. J Plast Eng, 2008; 15(4): 72
(王鹏, 董湘怀, 傅立军. 塑性工程学报, 2008; 15(4): 72)
[20] Il′yushin A A. Plasticity. Moscow: Gostekhizdat Publishing, 1948
(Ильюшин А А. Пластичность Москва: Государственное Издательство Технико-Теоретической Литературы, 1948)
[21] Kobayashi S, Oh S I, Altan T. Metal Forming and the Finite–Element Method. New York: Oxford University Press Publishing, 1989: 86

[1] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[2] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[3] Yongkui LI, Chunyi QUAN, Shanping LU, Qingyang JIAO, Shijian LI, Zhonghai SUN. STUDY ON SHAPE CORRECTION OF THE THIN PLATE OF TA15 TITANIUM ALLOY BY POST WELD HEAT TREATMENT[J]. 金属学报, 2016, 52(3): 281-288.
[4] ZHU Ruidong, DONG Wenchao, LIN Huaqiang, LU Shanping, LI Dianzhong. FINITE ELEMENT SIMULATION OF WELDING RESIDUAL STRESS FOR BUFFER BEAM OF CRH2A HIGH SPEED TRAIN[J]. 金属学报, 2014, 50(8): 944-954.
[5] LI Yongkui, CHEN Jundan, LU Shanping. RESIDUAL STRESS IN THE WHEEL OF 42CrMo STEEL DURING QUENCHING[J]. 金属学报, 2014, 50(1): 121-128.
[6] CHANG Zhengkai, XIAO Jinquan, CHEN Yuqiu, LIU Shanchuan, GONG Jun, SUN Chao. STUDY ON DEPOSITION OF MAGNETIC FILMS USING ARC ION PLATING[J]. 金属学报, 2012, 48(5): 547-554.
[7] JIANG Wenchun WOO Wanchuck WANG Bingying TU Shan–Tung . A STUDY OF RESIDUAL STRESS IN THE REPAIR WELD OF STAINLESS STEEL CLAD PLATE BY NEUTRON DIFFRACTION MEASUREMENT AND FINITE ELEMENT METHOD[J]. 金属学报, 2012, 48(12): 1525-1529.
[8] LIU Xianghua. PROGRESS AND APPLICATION OF PLASTIC FINITE ELEMENT METHOD IN METALS ROLLING PROCESS[J]. 金属学报, 2010, 46(9): 1025-1033.
[9] ZHANG Hongwei ZHANG Yidu WU Qiong. NUMERICAL SIMULATIONS OF SHOT-PEENING PROCESS AND IMPACT EFFECT[J]. 金属学报, 2010, 46(1): 111-117.
[10] HAN Zhiqiang ZHU Wei LIU Baicheng. THERMOMECHANICAL MODELING OF SOLIDIFICATION PROCESS OF SQUEEZE CASTING I. Mathematic Model and Solution Methodology[J]. 金属学报, 2009, 45(3): 356-362.
[11] ZHAO DaWen LI Jinfu. PHASE–FIELD SIMULATION OF THE EFFECT OF KINETIC ANISOTROPY ON CRYSTAL GROWTH IN UNDERCOOLED MELTS[J]. 金属学报, 2009, 45(10): 1237-1241.
[12] . EFFECT OF VARIATION OF AXIAL LOAD ON MATERIAL DEFORMATIONS AND TEMPERATURE DISTRIBUTIONS IN FRICTION STIR WELDING[J]. 金属学报, 2007, 43(8): 868-874 .
[13] . EFFECT OF WELDING PARAMETERS ON MIXTURE OF MATERIALS IN NUGGET ZONE IN FRICTION STIR WELDS[J]. 金属学报, 2007, 43(3): 321-326 .
[14] ;. FINITE ELEMENT SIMULATION FOR CYCLIC DEFORMATION OF SiCP/6061Al ALLOY COMPOSITES[J]. 金属学报, 2006, 42(10): 1051-1055 .
[15] LI Xiaojun; CHAI Donglang; XI Yulin. Analog Simulation of Local Stress Field in SiCp Reinforced Magnesium Matrix Composites[J]. 金属学报, 2004, 40(9): 927-929 .
No Suggested Reading articles found!