Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (5): 465-471     DOI:
Research Articles Current Issue | Archive | Adv Search |
Radiative Heat Transfer Calculation for Superalloy Turbine Blade in Directional Solidification Process
Cite this article: 

. Radiative Heat Transfer Calculation for Superalloy Turbine Blade in Directional Solidification Process. Acta Metall Sin, 2007, 43(5): 465-471 .

Download:  PDF(345KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Numerical simulation has a more and more important effect on improving directional solidification process. Because of the vacuum environment in the furnace where turbine blades are produced, radiative heat transfer plays a significant role in energy transportation. In traditional radiative heat transfer approaches, view factor calculation is a key step, so it takes too much time. Considering this point, Improved Monte Carlo Ray Tracing Approach has been developed. Because this approach combines the space division and the directional solidification features, the view factor calculation is avoided so that the time consuming is greatly shortened.The approach has been embedded in the self-developed software for turbine blade directional solidification temperature simulation. According to the experiments, the simulation results agreed well with the experimental.
Key words:  superalloy turbine blade      improved Monte Carlo ray tracing method      
Received:  20 September 2006     
ZTFLH:  TG292  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I5/465

[1] Schafrik R, Sprague R. Adv Mater Processes, 2004; 162(5): 29
[2] Modest M F. Radiative Heat Transfer. 2nd, New York: Academic Press, 2003: 644
[3] Upadhya G K, Das S, Chandra U, Paul A J. Appl Math Modelling, 1995; 19: 354
[4] Zhu J D, Ohnaka I, Kudo K, Obara S, Kimatsuka A, Wang T M, Kinoshita F, Murakami T. In: Stefanescu D M, James A W, Mark R J, Matthew J M , eds., Modeling of Casting, Welding and Advanced Solidification Processes-X, 1, Destin, FL: The Minerals, Metals & Materials Society, 2003: 447
[5] Shapiro A B. J Heat Transf ASME, 1985; 107: 730
[6] Charles N Z, Patrick J B. User's Manual for LSMONTE A Three-Dimensional, Radiative Heat Transfer Analysis Computer Code, Fort Collins, CO: Colorado State University, 2000: 6
[7] Walton G N. Calculation of Obstructed View Factors by Adaptive Integration, NISTIR-6925, National Institute of Standards and Technology (USA) Report, Caithersburg, MD, 2002: 8
[8] Liu S Z, Li J R, Tang D Z, Zhong Z G. Mater Eng, 1999; (7): 40 (刘世忠,李嘉荣,唐定忠,钟振纲.材料工程,1999;(7):40)
[9] Zhang K F, Mao X M, Fu H Z. Acta Aeronaut Astronaut Sin, 1993; 14(2): B072 (张克福,毛协民,傅恒志.航空学报, 1993;14(2):B072)
[10] Yu J, Zhang X P, Xu Q Y, Liang Z J, Liu B C, Zhang M H, Li F J, Zhou J H, Liu Y. Spec Cast Nonferrous Alloys, 2004; (5): 36 (于靖,张新平,许庆彦,梁作俭,柳百成,张明豪,李锋军,周继红,刘艳.特种铸造及有色合金,2004;(5):36)
[11] Jiang W H. Heat Transfer. Beijing: Higher Education Press, 1989: 183 (姜为珩.传热学.北京:高等教育出版社,1989:183)
[12] Liang Z J, Xu Q Y, Li J T, Li S Q, Zhang J, Liu B C, Zhong Z Y. Rare Met Mater Eng, 2003; 40: 164 (梁作俭,许庆彦,李俊涛,李世琼,张继,柳百成,仲增墉.稀有金属材料与工程,2003;40:164).
[1] PAN Dong XU Qingyan LIU Baicheng. MODELLING ON DIRECTIONAL SOLIDIFICATION OF SUPERALLOY BLADES WITH FURNACE WALL TEMPERATURE EVOLUTION[J]. 金属学报, 2010, 46(3): 294-303.
No Suggested Reading articles found!