Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (7): 708-714     DOI:
Research Articles Current Issue | Archive | Adv Search |
In Situ Observation on Movement And Agglomeration of Inclusion in Solid--Liquid Mush Zone During Melting of Stainless Steel AISI304
LIANG Gaofei; WANG Chengquan; FANG Yuan
Advanced Technology Institute; Technology Center of Baosteel; Shanghai 201900
Cite this article: 

LIANG Gaofei; WANG Chengquan; FANG Yuan. In Situ Observation on Movement And Agglomeration of Inclusion in Solid--Liquid Mush Zone During Melting of Stainless Steel AISI304. Acta Metall Sin, 2006, 42(7): 708-714 .

Download:  PDF(1258KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The movement and agglomeration of inclusion in the solid-liquid (S-L) zone during melting of an AISI304 stainless steel has been observed in-situ by using a confocal laser scanning microscope. The results show that the inclusion particles move through the liquid channels formed by the remaining solid. The average movement rate is 80 μm/s when the volume fraction of remaining austenite is about 70 %. Near to absolute melting, the movement rate of the inclusion far away from S-L interface is higher than 1500 μm/s, and that nearby the interface is in the range from 50 μm/s to 200 μm/s. A metal layer (δ ferrite phase) has been observed on the melt surface. It has the crystal boundary and sub-boundary similar to ordinary metal. The inclusions have been adsorbed by the metal layer. The morphology of the visible inclusion transfers from granular to worm-like during melting. The inclusions attract severely with each other, as a result, they agglomerate and granulate close-by the metal layer.
Key words:  inclusion      confocal laser scanning microscope      steel melt      movement      agglomeration      in-situ observation      
Received:  18 October 2005     
ZTFLH:  TG113  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I7/708

[1] Chen M H,Shen R M.Iron Steel, 2000; 35(4): 69 (陈名浩,沈汝美.钢铁,200;5(4):69)
[2] Li B K,Huo H F,Luan Y J. Acta Metall Sin, 2003; 39: 932 (李宝宽,霍慧芳,栾叶君.金属学报,2003;39:932)
[3] Zhang B W,Deng K, Lei Z S,Ren Z M.Acta Metall Sin, 2004; 40: 623 (张邦文,邓康,雷作胜,任忠鸣.金属学报,2004;40:623)
[4] Zhu M Y, Sawada I. Acta Metall Sin, 1997; 33: 1215 (朱苗勇,Sawada I.金属学报,1997;33:1215)
[5] Yin H, Emi T,Shibata H. Acta Mater,1999; 47: 1523
[6] Dippenaar R, Phelan D. Metall Mater Thins, 2003; 34B:495
[7] Phelan D, Dippenaar R. ISIJ Int, 2004; 44: 414
[8] Phelan D, Dippenaar R. Metall Mater Trans, 2004; 35A:3701
[9] Yuki N, Shibata H, Emi T. ISIJ Int, 1998; 38: 317
[10] Mcdonald N, Scridha S. JOM, 2004; 56: 182
[11] Martin E V, Yan W, Seetharaman S. Steel Res Int, 2005;76: 306
[12] Misra P, Chevrier V,Sridhar S, Cramb A W. Metall Mater Trans, 2000; 31B: 1135
[13] Hiroyuki S, Hongbin Y, Satoru Y,Toshihiko E, Mikio S.ISIJ Int, 1998; 38: 149
[14] Haiwen L. Scan J Met, 2001; 30: 212
[15] Kimura S, Nakajima K, Mizoguchi S, Hasegawa H. Metall Mater Trans, 2002; 33A: 427
[16] Yin H B, Shibata H, Emi T, Suzuki M. ISIJ Int, 1997; 37:936
[17] Yin H B, Shibata H, Emi T, Suzuki M. ISIJ Int, 1997; 37:946
[18] Wei Z Y. Iron Steel, 1980; 15(2): 45 (魏振宇.钢铁,1980;15(2):45)
[19] Schubert Th, Loser W,Schinnerling S, Bacher I. Mater Sci Technol, 1995; 11: 181
[20] Pearson J R A. J Fluid Mech, 1958, 4: 489
[21] Ashkin A. Phys Rev Lett, 1970, 24: 156
[22] Shangguan D, Ahuja S, Stefanescu D M. Metall Trans,1992; 23A: 669
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[4] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[5] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[6] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[7] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[8] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[9] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[10] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[11] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[12] Yu HUANG, Guoguang CHENG, You XIE. Modification Mechanism of Cerium on the Inclusions in Drill Steel[J]. 金属学报, 2018, 54(9): 1253-1261.
[13] Ge MA, Xiurong ZUO, Liang HONG, Yinglun JI, Junyuan DONG, Huihui WANG. Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea[J]. 金属学报, 2018, 54(4): 527-536.
[14] Jun LI,Honghao GE,Menghuai WU,Andreas LUDWIG,Jianguo LI. A COLUMNAR & NON-GLOBULAR EQUIAXED MIXED THREE-PHASE MODEL BASED ON THERMOSOLUTAL CONVECTION AND GRAIN MOVEMENT[J]. 金属学报, 2016, 52(9): 1096-1104.
[15] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
No Suggested Reading articles found!