Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (9): 999-1003     DOI:
Research Articles Current Issue | Archive | Adv Search |
FORMATION OF Cu-BASED BULK AMORPHOUS ALLOY IN THE Cu-Zr-Nb SYSTEM
XIA Junhai; QIANG Jianbing; WANG Yingmin; WANG Qing; HUANG Huogen; DONG Chuang
State Key Laboratory for Materials Modification by Laser; Ion and Electron Beams & Laboratory of Special Processing of Raw Materials; Dalian University of Technology; Dalian 116024
Cite this article: 

XIA Junhai; QIANG Jianbing; WANG Yingmin; WANG Qing; HUANG Huogen; DONG Chuang. FORMATION OF Cu-BASED BULK AMORPHOUS ALLOY IN THE Cu-Zr-Nb SYSTEM. Acta Metall Sin, 2005, 41(9): 999-1003 .

Download:  PDF(184KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Two atomic clusters, Cu8Zr5 and Cu6Zr5 derived from the Cu8Zr3 and Cu10Zr7 phase structures, correspond to two deep eutectic compositions of Cu61.8Zr38.2 and Cu56Zr44. Cu64Zr36 is the best glass-forming composition in the Cu-Zr binary system. Three e/a-variant composition lines (Cu64Zr36)100-xNbx, (Cu61.8Zr38.2)100-xNbx and (Cu56Zr44)100-xNbx were constructed in the Cu--Zr--Nb system by linking these three specific compositions with the third constitute Nb. The pure Zr and Nb elements were first melted into interalloys, then the interalloys were melted with Cu, and finally alloy bars with diameter of 3 mm were prepared by copper mould suction casting. Minor Nb additions (atomic fraction, x≤3) can improve remarkably the glass forming abilities of the Cu-Zr alloys. The optimum composition Cu60.3Zr37.2Nb2.5 with the highest Tg/Tl =0.626 is located on the e/a -variant line linking the third element Nb and Cu8Zr5 icosahedral cluster and Cu61.8Zr38.2 which possess the deepest eutectic point. The glass formation relative to clusters in Cu-Zr system is also discussed.
Key words:  bulk amorphous alloy      Cu-Zr-Nb alloy      atomic cluster      
Received:  20 January 2005     
ZTFLH:  TG139  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I9/999

[1] Inoue A, Zhang T, Masumoto T. Mater Trans JIM, 1991; 31: 177
[2] Zhang T, Inoue A, Masumoto T. Mater Trans JIM, 1991; 32: 1005
[3] Peker A, Johnson W L. Appl Phys Lett, 1993; 63: 2342
[4] Kim S G, Inoue A, Masumoto T. Mater Trans JIM, 1991; 31: 929
[5] Bruck H A, Rosakis A J, Johnson W L. J Mater Res, 1996; 11: 503
[6] Gilbert C G, Ritchie R O, Johnson W L. Appl Phys Lett, 1997; 71: 476
[7] Inoue A, Zhang W, Zhang T, Kurosaka K. Acta Mater, 2001; 49: 6645
[8] Inoue A, Zhang W, Zhang T, Kurosaka K. Mater Trans, 2001; 42: 1149
[9] Inoue A, Zhang W. Mater Trans, 2002; 43: 2921
[10] Zhang Y, Zhao D Q, Wang R J, Wang W H. Acta Mater, 2003; 51: 1971
[11] Asami K, Qin C L, Zhang T, Inoue A. Mater Sci Eng, 2004; A375-377: 235
[12] Wang Y M, Shek C H, Qiang J B, Wong C H, Chen W R, Dong C. Scr Mater, 2003; 48: 1525
[13] Wang Y M, Zhang X F, Qiang J B, Wang Q, Wang D H, Li D J, Shek C H, Dong C. Scr Mater, 2004; 50: 829
[14] Wang Y M, Shek C H, Qiang J B, Wong C H, Wang Q, Zhang X F, Dong C. Mater Trans, 2004; 45: 1180
[15] Wang Q, Qiang J B, Wang Y M, Xia J H, Zhang X F, Dong C. Acta Mater, 2005, in press
[16] Inoue A, Zhang W. Mater Trans, 2004; 45: 584
[17] Wang D, Li Y, Sun B B, Sui M L, Lu K, Ma E. Appl Phys Lett, 2004; 84: 4029
[18] Xu D H, Lohwongwatana B, Duan G, Johnson W L, Garland C. Acta Mater, 2004; 52: 2621
[19] Davies H A. In: Cantor B, ed., Rapidly Quenched Metals, Vol.1, Part Ⅲ, London: The Metals Society, 1978: 1
[20] Lu Z P, Tan H, Li Y, Ng S C. Scr Mater, 2000; 42: 667
[21] Wang Y M, Qiang J B, Wong C H, Shek C H, Dong C. J Mater Res, 2003; 18: 642
[22] Wang Q, Wang Y M, Qiang J B, Zhang X F, Wang D H, Dong C. Acta Metall Sin, 2004; 40: 1183 (王清,王英敏,羌建兵,张新房,王德和,董闯.金属学 报,2004;40:1183)
[23] Inoue A. Acta Mater, 2000; 48: 279
[24] Waniuk T A, Schroers J, Johnson W L. Appl Phys Lett, 2001; 78: 1213
[25] Inoue A, Zhang T, Kim Y H. Mater Trans JIM, 1997; 38: 749
[26] Zhang T, Inoue A. Mater Trans JIM, 1998; 39: 1230
[27] Zhang Y, Zhao D Q, Pan M X, Wang W H. J Non-Cryst Solids, 2003; 315: 206
[28] Buschow K H L. J Phys F: Met Phys, 1984; 14: 593
[29] Sakata M, Cowlam N, Davies H A. In: Masumoto M, Suzuki K, eds., Rapidly Quenched Metals, Vol.1, Sendai, Japan Inst Met, 1982: 327
[30] Sakata M, Cowlam N, Davies H A. J Phys F: Met Phys, 1981; 11: L157
[31] Scott M G. Scr Metall, 1981; 15: 1073
[32] Chen L C, Spaepen F. Nature, 1988; 336: 366
[33] Reichert H, Klein O, Dosch H, Denk M, Honkimaki V, Lippmann T, Reiter G. Nature, 2000; 408: 839
[34] Wang Q, Qiang J B, Wang Y M, Xia J H, Zhang X F, Dong C. Mater Sci Forum, 2005; 475-479: 3381
[1] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[2] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[3] Yaoxiang GENG,Kaiming HAN,Yingmin WANG,Jianbing QIANG,Qing WANG,Chuang DONG,Guifeng ZHANG,O TEGUS,Peter HAÜSSLER. COMPOSITION DESIGN OF Fe-B-Si-Ta BULK AMORPHOUS ALLOYS BASED ON CLUSTER+ GLUE ATOM MODEL[J]. 金属学报, 2015, 51(8): 1017-1024.
[4] SUN Yajuan WEI Xianshun HUANG Yongjiang SHEN Jun. EFFECT OF Gd ADDITION ON THE GLASS FORMING ABILITY AND MECHANICAL PROPERTIES IN A Zr–BASED BULK AMORPHOUS ALLOY[J]. 金属学报, 2009, 45(2): 243-248.
[5] Zhao Yi. Molecular dynamics simulation of the nucleation in a supercooled liquid Ni3Al[J]. 金属学报, 2008, 44(10): 1157-1160 .
[6] HE Lin. Effect of Oxygen on the Thermal Stability of Zr-Cu-Ni-Al-Ti Bulk Amorphous Alloy[J]. 金属学报, 2006, 42(2): 134-138 .
[7] XING Dawei; SUN Jianfei; SHEN Jun; WANG Gang; YAN Ming; LIU Yu. EFFECT OF Ti ADDITION ON THE GLASS--FORMING ABILITY OF (Zr0.59Cu0.18Ni0.13Al0.10)100-xTix ALLOYS[J]. 金属学报, 2004, 40(4): 416-420 .
No Suggested Reading articles found!