|
|
Mechanism Of Electric Fatigue In PLZE Ceramics |
CHEN Zhiwu; CHENG Xuan; ZHANG Ying |
Department of Materials Science and Engineering; Xiamen University |
|
Cite this article:
CHEN Zhiwu; CHENG Xuan; ZHANG Ying. Mechanism Of Electric Fatigue In PLZE Ceramics. Acta Metall Sin, 2004, 40(3): 230-234 .
|
Abstract The electric fatigue property and fatigue mechanism of PLZT ferroelectric ceramics were studied. The dielectric constant and hysteresis loops for the non--fatigued sample were measured and compared with those for the fatigued sample at room temperature and with those for the fatigued sample annealed above the Curie temperature for hours. The experimental results show that the
temperature dependences of dielectric constant and the hysteresis loops of the fatigued sample annealed above the Curie temperature for hours differ significantly from those of the non--fatigued sample.The SEM analysis indicates that the facture mode is mainly trans--granular for the non—fatigued sample, while inter--granular for the fatigue sample. The magnitude of strain due to the 90.domain reorientation during the application of an AC electric field, estimated from the in--situ XRD spectra, reaches as high as 0.1%. This repeated and high strain induced by the 90 domain reorientations ultimately leads to electric fatigue of the samples.
|
Received: 08 March 2003
|
|
[1] Chen D R. Li G R. Zhu M G. J Function Mater Dev, 1997; 3(4) : 236(陈大任,李国荣,朱梅根.功能材料与器件学报,1997; 3(4) :236) [2] Jiang Q Y, Cao W W, Cross L E. J Am Ceram Soc, 1994; 77: 211 [3] Yang W. Mechatronic Reliability. Beijing: Tsinghua University Press, 2001: 21(杨卫.力电失效学.北京:清华大学出版社,2001:21) [4] Dederichs H, Arlt G Ferroelectrics. 1986; 68: 281 [5] Pan W Y, Yue C F, Tosyali O. J Am Ceram Soc, 1992; 75: 1543 [6] Warren W L, Turtle B A, Dimos D. Appl Phys Lett, 1995; 67: 1426 [7] Pan W Y, Yue C F, Tuttle B A. Ceram Trans, 1992; 25: 385 [8] Zhang N Y, Li L T, Gui Z L. Mater Chem Phys, 2001; 72: 5 [9] Wang D, Fotinich Y, Carman G P. J Appl Phys, 1998; 83: 5342 [10] Fatuzzio E, Merz W J. Ferroelectricity. New York: NorthHolland Pubilishing Co., 1967: 102 [11] Stewart W C Cosentino L S. Ferroelectrics, 1970; 1: 149 [12] Plessner K W. Proc Phys Soc London Section, 1956; B69: 1261 [13] De Araujo C. A-Paz, Cuchiaro J D, Mcmillan L D, Scott M C, Scott J F. Nature, 1995; 374: 627 [14] Ikegamma S, Ueda J. J Phys Soc Jpn, 1967; 22: 725 [15] Pan W Y, Zhang Q M, Jiang Q Y, Cross L E. Ferroelectrics, 1988; 88: 1 [16] Nuffer J, Lupascu D C, Rodel J. d Eur Ceram Soc, 2001; 21: 1421 [17] Furuta A, Uchino K. J Am Ceram Soc, 1993; 76: 1615 [18] Takahashi S, Ochi A, Yonezawa M, Yano T, Hamatsuki T, Fukui I. Jpn J Appl Phys, 1983: 22: 157 [19] Carl K. Ferroelectrics, 1975; 9: 23 [20] Talor G W. J Appl Phys, 1967; 38: 4697 [21] Pan M J, Park S E, Park C W Markowski K A, Yoshikawa S. Randall C A. J Am Ceram Soc, 1996: 79: 2971 [22] Yoo I K, Desu S B. Mater Sci Eng, 1992; B13:319 [23] Arlt G. Neumanna H. Ferroelectrics, 1988; 87:109 [24] Roebels U, Calderwood J H, Arlt G. J Appl Phys, 1995: 77:4002 [25] Li SP, Bhalla A S, Newnham R E, Cross L E. J Mater Sci, 1994; 29:1290 [26] Li X P, Shih W Y, Vartuli J S, Milius D L, Akasy I A, Shih W H. J Am Ceram Soc, 2002; 85:844 [27] Tsnrumi T, Kumano Y, Ohashi N, Takenaka T, Fukunaga O. Jpn J Appl Phys, 1997; 36:5970 [28] Zhang Y. Acta Mech Sin, 2000; 32(2) : 213(张颖.力学学报),2000; 32(2) : 213) [29] Cao H, Evans A. J Am Ceram Soc, 1994; 77:1783 [30] Pak Y E. J Appl Mech, 1990; 57:647 [31] Zhang T Y, Tong P. Int J Solids Structs, 1996; 33:343 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|