|
|
HIGH TEMPERATURE CREEP OF A DIRECTIONALLY SOLIDIFIED Ni-BASE SUPERALLOY |
YUAN Chao; GUO Jianting; YANG Hongcai; WANG Shuhe( Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015 School of Materials Science and Metallurgy; Northeastern University; Shenyang 110006)Correspondent. Guo Jianting; professor Tel: 25843531-55493; Fax: (024)23891320;E-mail: jtguo .imr.ac.cn |
|
Cite this article:
YUAN Chao; GUO Jianting; YANG Hongcai; WANG Shuhe( Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015 School of Materials Science and Metallurgy; Northeastern University; Shenyang 110006)Correspondent. Guo Jianting; professor Tel: 25843531-55493; Fax: (024)23891320;E-mail: jtguo .imr.ac.cn. HIGH TEMPERATURE CREEP OF A DIRECTIONALLY SOLIDIFIED Ni-BASE SUPERALLOY. Acta Metall Sin, 1998, 34(8): 858-863.
|
Abstract The tensile creep behaviors of DZ17G alloy, a directionally soliditied Ni-base superalloyl were investigated at 870 ℃ under the applied stress range of 330-420 MPa. All of the creep curves have similar shape: a short primary creep and dominant accelerated creep stages. The creep apparent parameters (the stress exponent and the apparent activation energy for creep) and TEM observations suggest that the Orowan bowing process of dislocations is the dominant creep deformation mechanism. The reason why creep rate ascends at the beginning of accelerated creep stage is not the nucleation and propagation of creep cracks, but the consequence of microstructure change (γ' particles oriented coarsening uncompletely). The creep fracture data follow the Monkman-Grant relationship, and the final fracture process is controlled by the propagation rate of creep cracks.
|
Received: 18 August 1998
|
1 Sims C T, Stoloff N S, Hagel W C. Superulloys II New York: John Wiley and Sous Inc, 1987: 123 2 Mackay R A, Maiey R D. Metall Trans, 1982; 13A: 1747 3 Nathal M V, Ebert L J. Metall Trans, 1985; 16A: 427 4 Pollock T M, Argon A S. Acta Metall Mater 1992; 40: 1 5 Rouault-Rogez H, Dupeux M, Ignat M. Acta Metall Mater 1994; 42: 3137 6 Dennison J P, Holmes P D, Wilshire B. Mater Sci Eng, 1978; 33: 35 7 Versnyder F L, Shank M E. Mater Sci Eny, 1970; 6: 213 8 Yuan C, Guo J T, Yang H C, Wang S H. J Mater Sci Tech, 1998; 14(3): 219 9 Mishra R S, Singh S P, Sriramawurthy A M, Pandey M C. Mater Sci Tech, 1995; 11: 341 10 Scarlin R B. Metall Trans, 1976; 7A: 1535 11 Mukherjee A K, Bird J E, Dorn J E. Trans ASM 1969; 62: 155 12 Guo Jianting, Ranucci D, Picco E, Strocchi P M. Metall Trans, 1983; 14A: 2329 13 Tien J K, Coply S M. Metall Trans, 1971; 2A: 215 14 Svetlov I L, Golvovko B A, Epishin A I, Abalakin N P. Scri Metall Maten 1992; 26: 1353 15 袁超,郭建亭,杨洪才,王淑荷,金属学报, 1998; 34(7): 689(Yuan C, Guo J T, Yang H C, Wang S H. Acta Metall Sin, 1998; 34(7): 689) 16 Monkman F C, Grant J. Proc ASTM 1956; 56: 593 17 Tien J K, Ansell G S. Resistence to Creep, Alloy and Microstructure Design, NewYork: Academic Press,1976: 167= |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|