Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (7): 735-741    DOI:
Current Issue | Archive | Adv Search |
CHARACTERIZATION OF A MULTIFILAMENTARY Nb3Al WIRE FABRICATED BY RAPIDLY HEATING AND RAPIDLY QUENCHING METHOD
MAO Dali(The Public Laboratory of State Education Commission for High Temperature Materials and High Temperature Tests; Department of Materials Science; Shanghai Jiaotong University; Shanghai 200030)ITOH Kihao;WADA Hitoshi(National Research Institute for Metals; Tsukuba; Ibaraki 305; Japan)
Cite this article: 

MAO Dali(The Public Laboratory of State Education Commission for High Temperature Materials and High Temperature Tests; Department of Materials Science; Shanghai Jiaotong University; Shanghai 200030)ITOH Kihao;WADA Hitoshi(National Research Institute for Metals; Tsukuba; Ibaraki 305; Japan). CHARACTERIZATION OF A MULTIFILAMENTARY Nb3Al WIRE FABRICATED BY RAPIDLY HEATING AND RAPIDLY QUENCHING METHOD. Acta Metall Sin, 1998, 34(7): 735-741.

Download:  PDF(1346KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A rapidly heating and rapidly quenching method for the manufacturing of multifilamentary Nb3Al wire was introduced, which can obtained Nb3Al with the near stoichiometric composition. After annealing at 800 ℃ for 2, 12 and 96 h, critical temperature Tc of the samples measured by four probe method is 17 K. Critical curreds Ic was measured in the function of temperature and applied field in a split pair magnet. The relationship of normalized pinning force vs applied field follows simple Kramer equation. Grain boundaries were most probable pinning source for the magnetic line of force. The obtained upper critical field Bc2 existed a linear relation with the temperature. A critical surface of Ic - T - B was also plotted from the measurement of critical current.
Key words:  Nb3Al      critical temperature      critical current      critical field     
Received:  18 July 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I7/735

1 Foner S, McNiff E J Jr, Geballe T H, Willens R H, Buehler E. Physica, 1971; 55: 534
2 Thirmr C L H, Pourralnimi S, Schwartz B B, Foner S. IEEE Trans Magn, 1985; MAG-21: 756
3 Yamada Y, Ayai N, Takahashi K, Sato K, Sugimoto M, Ando T, Takahashi Y, Nishi M. Adv Cryop Egg, 1994;40: 407
4 Inoue K, Iijima Y, Takeuchi T. Appl Phys Lett, 1988; 52: 1724
5 Takeuchi T, Iijima Y, Kosuge M, Kuroda T, Yuyama M, Inoue K. IEEE Trans Magn, 1989; MAG-25: 2068
6 Takeuchi T, Kosuge M, Iijima Y, Hasegawa A, Kiyoshi T, Inoue K. IEEE Trans Magn, 1991; MAG-27: 2045
7 Kuroda T, Wada H, Bray S L, Ekin J W. Fusion Eng Design, 1993; 20: 271
8 黑田恒生,和田仁日本金属学会志,1991;55:344(Kuroda T, Wada H J Jpn Inst Met, 1991; 55: 344)
9 Takeuchi T, Kuroda T, Itch K, Kosuge M, Iijima Y, Kiyoshi T, Matsumoto F, Inoue K. J Fusion Energy,1992; 11(1): 7
10黑田恒生,牛桐一宗,小高久男,汤山道也,和田仁,井上廉,罔田东一.日本原子力学会志,1995 37: 652(Kuroda T, Katagiri K, Kodafor H, Yuyama M, Wada H, Inoue K; Okada T.J At Enerpy Soc Jpn, 1995; 37: 652)
11 Kuroda T, Katagiri K, Kodaka H, Yuyama M, Wada H, Inoue K, Okada T. Physica,1996; B216: 230
12 Iijima Y, Kosuge M, Takeuchi T, Inoue K. Adv Cryop Eng, 1994; 40: 899
13 Iijima Y, Kosuge M, Takeuchi T, Inoue K. In: Haruyama T, Mitsui T, Yamafuji K eds., Proc 16th IntCryopenic Engineeriny Conf Int/Cryogenic Materials Conf Kitakyushu, Japan, Elsevier Science, 1996: 1697
14 Fukuda K, Iwaki G, Kimura M, Sakai S, Iijima Y, Takeuchi T, Inoue K, Kobayashi N, Watanabe K, Await S.In: Haruyama T, Mitsui T, Yamafuji K eds., Proc 16th Int Cryogenic Engineering/Conf Int CryogenicMaterials Conf Kitakyushu, Japan, Elsevier Science, 1996: 1669
15 Kramer E J. J Appl Phys, 1973; 44: 1360
16 Togano K, Takeuchi H, Tachikawa K. IEEE Trans Magn, 1983; MAG-19: 414
17 Takeuchi T, Togano T, Tachilera K. IEEE Trans Magn, 1987; MAG-23: 956
18 Clemente G, Habbal F, Tumbull D, Bevk J. Appl Phes Lett, 1985; 47: 640
19 Mueller D, Kehlenbeck M, Schaper W, Freyhart H C. Supereond Sci Technol Proc Conf 1991; 4: 365
20 Inoue K, Takeuchi T, Iijima L Y, Kosuge M. Cryogenics, 1989; 29: 361
[1] SUN Chao TAN Jun YING Shihao LI Cong PENG Qian ZHAO Suqiong. PREDICTION OF CRITICAL TEMPERATURE FOR DELAYED HYDRIDE CRACKING IN IRRADIATED N18 ZIRCONIUM ALLOY[J]. 金属学报, 2010, 46(7): 805-809.
[2] SUN Chao TAN Jun YING Shihao LI Cong PENG Qian ZHAO Suqiong. STUDY OF THE CRITICAL TEMPERATURES FOR DELAYED HYDRIDE CRACKING IN N18 ZIRCONIUM ALLOY[J]. 金属学报, 2009, 45(5): 541-546.
[3] QIU Zliuxian;YAO Guangchun;YU Yaxin;ZHANG Zhonglin(Northeastern University; Shenyang). WETTABILITY AND CRITICAL CURRENT DENSITY OF LITHIUM SALT-CONTAINING CARBON ANODE[J]. 金属学报, 1994, 30(22): 439-443.
[4] WU Yichu;CHANG Xiangrong;TIAN Zhongzhuo;XIAO Jimei University of Science and Technology Beijing. HYDROGEN DAMAGE IN HIGH PURITY IRON[J]. 金属学报, 1992, 28(2): 43-46.
No Suggested Reading articles found!