Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (9): 959-965    DOI:
Current Issue | Archive | Adv Search |
DEPENDENCE OF YIELD STRESS ON GRAIN SIZE OF NANOCRYSTALS
ZHU Wenhui; ZHOU Guangquan; CHENG Jingyi(University Scicnce Technology; Hefei 230026)(National University Defence Technology; Changsha 410073)
Cite this article: 

ZHU Wenhui; ZHOU Guangquan; CHENG Jingyi(University Scicnce Technology; Hefei 230026)(National University Defence Technology; Changsha 410073). DEPENDENCE OF YIELD STRESS ON GRAIN SIZE OF NANOCRYSTALS. Acta Metall Sin, 1996, 32(9): 959-965.

Download:  PDF(460KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A mesoscopic discription on the yield stress of nanocrystals was proposed by regarding the nanocrystals as a composite of crystalline matrix and inclusion of intercrystalline layers. By introducing effective yield stress and effective modulus, a range of critical size, over which the deviation of yield stress from Hall-Petch prediction will occur, was estimated for several typical nanocrystals, and the range depended sensitively on the properties of intercrystalline interfaces. Comparison between the obtained results and the experimental data could explain the size effect on yield stress quite well in the given range of nanocystalline size. The dependence of yield stress on grain size could be divided into four regions-linear, nonlinear, abnormal deviation and indefinite region. A method was suggested to determine the elastic modulus of inclusions starting from the mesoscopic analysis.
Key words:  nanocrystal yield stress      interface      Hall-Petch relation     
Received:  18 September 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I9/959

1LasalmonieA,StrudelJL.JMaterSci,1986;21:18372卢柯,刘学东,胡壮麒.材料研究学报,1994;8(5):3853GryaznovVG,GutkinMY,RomanovAE,TrusovLI.JMaierSci,1983,28:43594ChokskiAH,RosenR,KarchJ.ScrMetall,1989,23(8):16795JangJSC,KochCC.ScrMetallMater,1990;24(12):15996LuK.ScrMetallMater,1990,24(2):23197HughesAD,SmithSD,PandeCS.ScrMetall,1986,20(1):938HoflerHJ,AverbackRS.ScrMetallMater,1990;24(11):24019GryaznovVG,PolonskyIA,RomanovAE,TrusovLI.PhysRev,1991,44(1):4210FanJQ,ZhouGQ.InternationalJSolidStruct,1996,33(9):1243
[1] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[2] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[7] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[8] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[9] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[10] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[11] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
[12] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[13] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[14] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[15] QIN Qin, LI Cheng, HE Liu, YE Chenlong, ZANG Yong. An Investigation of Interface Bonding Strength of Bimetal Plate Based on the Optimization of Asymmetric Double Cantilever Beam Model[J]. 金属学报, 2020, 56(12): 1617-1628.
No Suggested Reading articles found!