Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (9): 11-17    DOI:
Current Issue | Archive | Adv Search |
FRACTAL DIMENSIONS OF HYDROGEN INDUCED BRITTLE FRACTURE OF TITANIUM ALUMINIDE
ZHANG Yue;KONG Feng;WANG Yanbin;QIAO Lijie;CHU Wuyang;XIAO Jimei University of Science and Technology Beijing
Cite this article: 

ZHANG Yue;KONG Feng;WANG Yanbin;QIAO Lijie;CHU Wuyang;XIAO Jimei University of Science and Technology Beijing. FRACTAL DIMENSIONS OF HYDROGEN INDUCED BRITTLE FRACTURE OF TITANIUM ALUMINIDE. Acta Metall Sin, 1993, 29(9): 11-17.

Download:  PDF(1223KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The relation between the Stress intensity factor K_I~* required for brittle crackinitiation and propagation and the fractal dimension D_F of the fracture surface was derived,l.e.lnK_I~* =(1/2)ln2γE'+(1/2)ln(d_f/L_0)·(1-D_F)where d_f is the fracture unit, L_0 a material constant, γ the real surface energy andE=E/(1-v~2). The surface energy can be calculated from the measured linear relation of thelnK_I vs D_F The equation is not only suitable for the overloaded cracking but also for the de-layed cracking (e.g. hydrogen induced cracking and stress corrosion cracking). The experi-mental results showed that the hydrogen induced delayed cracking occurred inTi-24Al-11Nb during charging, and the threshold stress intensity value was low i.e.K_(IH)/K_(IC)= 0.43. The relation between the stress intensity factor K_I~* and D_F measured by ex-periment was consistent with the theoretical equation.
Key words:  Ti-24Al-11Nb      hydrogen induced cracking      fractal dimension     
Received:  18 September 1993     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I9/11

1 Mandelbrot B B, Passoja D E, Paullay A J. Nature, 1984; 308: 721
2 Lung C W. In: Pietronero L, Tosatti E eds., Fractals in Physics, Elsevier Science, 1986: 189
3 Pande C S, Richards L E, Louat N, Dempsey B D, Schwoeble A J. Acta Metall, 1987: 35: 1633
4 Underwood E E, Banerji K. Mater Sci Eng, 1986; 80: 1
5 Dauskardt R H, Haubensak F, Ritchie O. Acta Metall, 1990; 38: 143
6 穆在勤,龙期威.金属学报,1988;24:A142
7 穆在勤,李淑清,龙期威.材料科学进展,1990;4:247
8 龙起易,李淑清,龙期威.材料科学进展,1990;4:241
9 苏辉,张玉贵,阎振启 金属学报,1989;23:A466
10 陈军,龙起易,陈继克,龙期威.中国腐蚀与防护学报,1991;11:344
11 Chu Wuyang, Thompson A W. Metall Trans, 1992: 23A: 1299
12 褚武扬,肖纪美,Thompson A W.金属学报,1992;28:A67
13 褚武扬.氢损伤与滞后断裂.北京:冶金工业出版社,1988:486
14 Chu Wuyang, Thompson A W. Metall Trans, 1991; 22A: 1299
15 Deve H E, Gevans A. Acta Metall Mater, 1991; 39: 1171
16 王燕斌,褚武扬,肖纪美.中国科学,1989;10A:1065
17 张统一,褚武扬,肖纪美.中国科学,1986;7A:316
[1] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[2] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[3] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[4] Zibing HOU,Jianghai CAO,Yi CHANG,Wei WANG,Han CHEN. Morphology Characteristics of Carbon Segregation in Die Steel Billet by ESR Based on Fractal Dimension[J]. 金属学报, 2017, 53(7): 769-777.
[5] Zheng LIU,Jiayi ZHANG,Haolin LUO,Keyue DENG. RESEARCH ON MORPHOLOGY EVOLUTION OF PRIMARY PHASE IN SEMISOLID A356 ALLOY UNDER CHAOTIC ADVECTION[J]. 金属学报, 2016, 52(2): 177-183.
[6] WU Xiaojun CHENG Wen QIAO Shengru ZOU Wu ZHANG Peng ZHANG Xiaohu. EVOLUTION OF PORES IN C/C COMPOSITE DURING RESIN IMPREGNATION-CARBONIZATION[J]. 金属学报, 2009, 45(11): 1402-1408.
[7] Xuechong Ren. EFFECT OF CASTING TEMPERATURE AND MACROSTRUCTURE ON HYDROGEN-INDUCED CRACKING OF TYRE[J]. 金属学报, 2007, 43(2): 149-153 .
[8] Yingrui Zhang. Electrochemical investigation of hydrogen induced cracking behaviors of X70 pipeline steel and welds[J]. 金属学报, 2006, 42(5): 521-527 .
[9] LIU Ning; ZHAO Hingzhong; JIANG Laizhu; LUO Huiguo; HU Zhenhua; CUI Kun(Huazhong University of Science and Technology; Wuhan 430074). TRANSVERSE RUPTURE STRENGTH OF Ni BONDED Ti(C, N) CERMET AND FRACTAL DIMENSION ANALYSIS OF ITS FRACTURE SURFACES[J]. 金属学报, 1995, 31(5): 229-235.
[10] LI Xiaowu; TIAN Jifeng; KANG Yan; WANG Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Manuscript received 1994-11-23; in revised form 1995-03-03). QUANTITATIVE ANALYSIS ON SURFACE ROUGHNESS OF FRACTURE[J]. 金属学报, 1995, 31(19): 311-317.
[11] LI Xueliang;LIN Jianxin (Hefei Polytechnical University). RANDOM FRACTAL STUDY OF FRACTURE SURFACE OF FREE-MACHINING STEELS[J]. 金属学报, 1994, 30(8): 380-384.
[12] LEI Weisheng;CHEN Bingsen(Tsinghua University;Beijing)(Manuscript received 4 November;1993). SELECTION OF MECHANICAL PARAMETERS IN APPLICATION OF FRACTAL TO FRACTURE RESEARCH[J]. 金属学报, 1994, 30(6): 269-273.
[13] SUN Liling;DONG Lianke;ZHANG Jinghua;HU Zhuangqi Institute of Metal Research; Academia Sinica; Shenyang. FRACTAL ANALYSES OF MCIN A DIRECTIONALLY SOLIDIFIED NICKEL-BASE SUPERALLOY[J]. 金属学报, 1993, 29(9): 6-10.
[14] SUN LiLing;DONG Lianke;ZHANG Jishan;ZHANG Jinghua;HU Zhuangqi Institute of metal Research; Academia Sinica; Shenyang Institute of Metal Research;Academia Sinica;Shenyang 110015. FRACTAL ANALYSIS OF DIRECTIONAL SOLIDIFICATION BEHAVIOUR OF Ni-BASE SUPERALLOY[J]. 金属学报, 1993, 29(3): 19-24.
[15] YI Jianzhang (Shenyang Instituteal of Aeronautical Engineering); YANG Zhi'an; ZHU Shijie; WANG Zhongguang (Institute of Metal Research; Academia Sinica; Shenyang). RELATIONSHIP BETWEEN FRACTAL DIMENSION AND CYCLIC CREEP PROPERTIES OF 34CrMoA ROTOR STEEL[J]. 金属学报, 1992, 28(12): 18-22.
No Suggested Reading articles found!