Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 594-600    DOI: 10.3724/SP.J.1037.2013.00504
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND ROOM TEMPERATURE COMPRESSION PROPERTIES OF Mg82.13Zn13.85Y4.02 ALLOY SOLIDIFIED UNDER SUPER-HIGH PRESSURE
DONG Yun1, LIN Xiaoping1(), XU Rui2, FAN Zhibin1, YE Jie1, WANG Zhe2
1 Department of Materials Science and Engineering, Northeastern University, Shenyang 110819
2 State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004
Cite this article: 

DONG Yun, LIN Xiaoping, XU Rui, FAN Zhibin, YE Jie, WANG Zhe. MICROSTRUCTURE AND ROOM TEMPERATURE COMPRESSION PROPERTIES OF Mg82.13Zn13.85Y4.02 ALLOY SOLIDIFIED UNDER SUPER-HIGH PRESSURE. Acta Metall Sin, 2014, 50(5): 594-600.

Download:  HTML  PDF(12128KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By the investigation of the microstructures of Mg82.13Zn13.85Y4.02 (mass fraction, %) alloy solidified under different pressure, it is found that the solidification microstructure of the alloy is consisted of a-Mg matrix, W-Mg3Y2Zn3 phase and I-Mg3YZn6 phase. In the microstructure of the alloy solidified under ambient pressure, the networks of the secondary phases of eutectic-like and rod-like shape are distributed in the a-Mg interdendritic space. As the solidification pressure increases, eutectic network is disconnected gradually and the amount of eutectic is diminished and the solubility of Zn in a-Mg rises gradually. The results of the measurement of the mechanical properties show that the compression strength, the yield strength and the compressibility of the alloy sample solidified under ambient pressure is 344 MPa, 331 MPa and 16% respectively. However, the compression strength, the yield strength and the compressibility of the alloy sample solidified from 1250 ℃ under 6 GPa is 455 MPa, 426 MPa and 25%, respectively. The observation of fracture surfaces shows that, in the alloy solidified under high pressure, the cleavage surface of the compressed fracture is decreased, and the tear ridge and tearing dimple can be found. The degree of cleavage fracture is decreased.

Key words:  Mg82.13Zn13.85Y4.02 alloy      high pressure solidification      stress-strain curve      cleavage surface     
Received:  21 August 2013     
ZTFLH:  TG146.2  
  TG21  
Fund: Natural Science Foundation of Hebei Province (No.E2013501096), Natural Science Foundation of Liaoning Province (No.20112063) and Projiect of Science and Technology of Northeastern University at Qinhuangdao (No.XNK201305)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00504     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/594

Fig.1  

常压下Mg82.13Zn13.85Y4.02合金的铸态组织及EDS分析

Fig.2  

不同压力下凝固Mg82.13Zn13.85Y4.02合金的XRD谱

Fig.3  

Mg82.13Zn13.85Y4.02合金热力学计算垂直截面相图

Fig.4  

超高压下Mg82.13Zn13.85Y4.02合金的凝固组织形貌

Fig.5  

不同压力下凝固的Mg82.13Zn13.85Y4.02合金的压缩应力-应变曲线

Fig.6  

凝固压力对Mg82.13Zn13.85Y4.02合金压缩性能的影响

Fig.7  

Mg82.13Zn13.85Y4.02合金室温压缩断口形貌

[1] Somekawa H, Watanabe H, Mukai T. Mater Lett, 2011; 65: 3251
[2] Xu S W, Zheng M Y, Kamado S, Wu K, Wang G J, Lv X Y. Mater Sci Eng, 2011; A528: 4055
[3] Luo S Q, Tang A T, Pan F S, Song K, Wang W Q. Trans Nonferrous Met Soc China, 2011; 21: 795
[4] Chen B, Chen L, Lin D L, Zeng X Q. Trans Nonferrous Met Soc China, 2012; 22: 773
[5] Wang J F, Gao S, Song P F, Huang X F, Shi Z Z, Pan F S. J Alloys Compd, 2011; 509: 8567
[6] Yang W P, Guo X F, Lu Z X. Trans Nonferrous Met Soc China, 2012; 22: 786
[7] Lee J Y, Kim D H, Lim H K, Kim D H. Mater Lett, 2005; 59: 3801
[8] Tong J, Huang H, Yuan G Y, Ding W J. Acta Metall Sin, 2011; 47:1520
(童 健, 黄 华, 袁广银,丁文江. 金属学报, 2011; 47: 1520)
[9] Somekawa H, Singh A, Mukai T. Adv Eng Mater, 2009; 11: 782
[10] Luo Z P, Zhang S Q, Tang Y L, Zhao D S. Scr Metall Mater, 1993; 28: 1513
[11] Tsai A, Niikura A, Inoue A. J Mater Res, 1997; 12: 565
[12] Батншeв А И,translated byZhang J S. Crystallization of Metal and Alloys Under Pressure. Harbin: Harbin University of Techonology Press, 1987: 23
(Батншeв А И 著,张锦升 译. 金属和合金在压力下结晶. 哈尔滨: 哈尔滨工业大学出版社, 1987: 23)
[13] Qu Y D, Li R D, Yuan X G, Li C X, Xiang Q C. Foundry, 2005; 54: 539
(曲迎东, 李荣德, 袁晓光, 李晨曦, 向青春. 铸造, 2005; 54: 539)
[14] Zhang G Z, Yu X F, Wang X Y, Jia G L, Gao Y Y. Acta Metall Sin, 1999; 35: 285
(张国志, 于溪凤, 王向阳, 贾光霖, 高允彦. 金属学报, 1999; 35: 285)
[15] Jie J C, Zou C M, Wang H W, Wei Z J. J Alloys Compd, 2010; 506: L12
[16] Chen Y, Liu L, Wang Y H, Liu J H, Zhang R J. Trans Nonferrous Met Soc China, 2011; 21: 2205
[17] Wang Z X, Lu J B, Xi Y J, Fan J W. J Alloys Compd, 2010; 492: 529
[18] Wang D Q, Yang G C, Lin L, Feng Z G. Mater Lett, 2008; 62: 1711
[19] Wang Z L, Zhang T, Li L, Zhou Y B, Wang H W, Wei Z J. Chin J Nonferrous Met, 2012; 22: 1006
(王振玲, 张 涛, 李 莉, 周月波, 王宏伟, 魏尊杰. 中国有色金属学报, 2012; 22: 1006)
[20] Sun S H,Li J,Xu R,Zhao H L,Liu R P. Chin J High Pressure Phys, 2008; 22: 434
(孙淑华, 李 杰, 徐 瑞, 赵海丽, 刘日平. 高压物理学报, 2008; 22: 434)
[21] Lin X P, Dong Y, Xu R, Sun G F, Jiao S H. Acta Metall Sin, 2011; 47: 1550
(林小娉, 董 允, 徐 瑞, 孙桂芳, 焦世辉. 金属学报, 2011; 47: 1550)
[22] Lin X P, Dong Y, Xu R, Zheng R G. Rare Met Mater Eng, 2013; 42: 2309
(林小娉, 董 允, 徐 瑞, 郑润国. 稀有金属材料与工程, 2013; 42: 2309 )
[23] Li B, Wang H W, Jie J C, Wei Z J. J Alloys Compd, 2011; 509: 3387
[24] Ding W J. The Science and Technology of Mg Alloy. Beijing: Science Press, 2007: 1
(丁文江. 镁合金科学与技术. 北京: 科学出版社, 2007: 1)
[25] Jiang X S,Zhao H. Quick Reference for Microscopic Fracture of Steel. Beijing: Machinery Industry Press, 2010: 45
(姜锡山,赵 晗. 钢铁显微断口速查手册. 北京: 机械工业出版社, 2010: 45)
[1] Yanli LIN, Zhubin HE, Guannan CHU, Yongda YAN. A New Method for Directly Testing the Mechanical Properties of Anisotropic Materials in Bi-Axial Stress State by Tube Bulging Test[J]. 金属学报, 2017, 53(9): 1101-1109.
[2] Guannan CHU,Yanli LIN,Weining SONG,Lin ZHANG. Forming Limit of FSW Aluminum Alloy Blank Based on a New Constitutive Model[J]. 金属学报, 2017, 53(1): 114-122.
[3] JIE Jinchuan, ZOU Chunming, WANG Hongwei, WEI Zunjie. MECHANICAL BEHAVIOR OF Al-20Mg ALLOY SOLIDIFIED UNDER HIGH PRESSURE[J]. 金属学报, 2014, 50(8): 971-978.
[4] LIN Xiaoping DONG Yun XU Rui SUN Guifang JIAO Shihui. CRYSTAL MORPHOLOGIES AND THE PHASES IN THE Mg–6Zn–3Y ALLOY SOLIDIFIED UNDER SUPER–HIGH PRESSURE[J]. 金属学报, 2011, 47(12): 1550-1554.
[5] LIN Yanli HE Zhubin YUAN Shijian. THE FACTORS AFFECTING THE PROFILE OF MIDDLE BULGE REGION DURING TUBE BULGE TEST[J]. 金属学报, 2010, 46(6): 729-735.
[6] Hai-Dong ZHAO; Baicheng LIU. AN ELASTIC-VISCOPLASTIC CONSTITUTIVE MODEL FOR SQUEEZE CASTING ALUMINUM ALLOY[J]. 金属学报, 2008, 44(4): 440-444 .
[7] LI Xiaowu; WANG Zhongguang;LI Shouxin (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academyof Sciences; Shenyang 110015)Correspondent: LI Xiaowu; Tel: (024)23843531-55925; Fax: (024)23891320;E-mail: rwli imr.ac. cn. CYCLIC STRAIN HARDENING AND SATURATION OF [■12]DOUBLE-SLIP-ORIENTED COPPER SINGLE CRYSTALS[J]. 金属学报, 1998, 34(8): 864-869.
No Suggested Reading articles found!