Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (9): 1221-1226    DOI: 10.3724/SP.J.1037.2010.00640
论文 Current Issue | Archive | Adv Search |
SIMULATION AND EXPERIMENTAL STUDY OF PREPARATION OF FUNCTIONALLY GRADIENT MATERIALS BY MIG WELDING UNDER MAGNETIC FIELD\par
WANG Chao ZHANG Haiou WANG Guilan
1) State Key Laboratory of Digital Manufacturing and Equipment Technology, School of Mechanical Engineering, Huazhong University of Science and Technology, Wuhan 430074
2) State Key Laboratory of Plastic Forming Simulation and Die \& Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article: 

WANG Chao ZHANG Haiou WANG Guilan. SIMULATION AND EXPERIMENTAL STUDY OF PREPARATION OF FUNCTIONALLY GRADIENT MATERIALS BY MIG WELDING UNDER MAGNETIC FIELD\par. Acta Metall Sin, 2011, 47(9): 1221-1226.

Download:  PDF(2341KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A preparation method of functionally gradient materials (FGM) by metal inert-gas (MIG) welding under magnetic field was proposed in this paper. Three dimensional finite element models of magnetic field, welding gun and metal specimen were built. Maxwell vortex field and instantaneous field were applied to simulate the preparation process with permanent magnetic field, alternating magnetic field and without magnetic field, and the simulation model was verified by the experiment. Simulation and experimental results show that in permanent magnetic field, the stirring of molten pool is weak, the FGM can not be prepared; under alternating magnetic field, the axial oscillating magnetic force and lateral extrusion magnetic force mix round the molten pool effectively, FGM can be prepared by MIG. Without magnetic field, the gradient of Al content in formed FGM is not obvious. Experimental results accord with simulation ones commendably.
Key words:  MIG welding combined with magnetic field      functionally gradient materials      alternating magnetic field      stirring of molten pool      oscillating magnetic
force
      extrusion magnetic force     
Received:  29 November 2010     
Fund: 

Supported by  National Natural Science Foundation of China (No.50875096)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00640     OR     https://www.ams.org.cn/EN/Y2011/V47/I9/1221

[1] Ruan J Z, Sparks T E, Panackal A, Ard K E, Liou F W, Slattery K, Chou H N, Kinsella M. J Manuf Sci Eng Trans ASME, 2007; 129: 303

[2] Dwivedi R, Kovacevic R. Int J Machine Tool Manuf, 2006; 46: 1811

[3] Lin J, Zhao H Y, Cai Z P, Hang SW, Lu X M, Ni S F. J Tsinghua Univ (Sci Technol), 2007; 47: 161

(林健, 赵海燕, 蔡志鹏, 黄士卫, 陆向明, 倪淑凤.

清华大学学报(自然科学版), 2007; 47: 161)

[4] Miller P C. Tool Prod, 1990; 55: 100

[5] Tang F, Lu A L, Mei J F. J Mater Process Technol, 1998; 74: 255

[6] Lin J, Huang S W, Cai Z P, Zhao H Y, Lu A L. Chin J Mech Eng. 2006; 42: 208

(林健, 黄士卫, 蔡志鹏, 赵海燕, 鹿安理. 机械工程学报, 2006; 42: 208)

[7] Huang X Q, Cai Z P. Chin J Mech Eng, 2011; 47: 88

(黄欣泉, 蔡志鹏. 机械工程学报, 2011; 47: 88)

[8] Jiang H W, Li C F, Zhao Z H, Li Z, Yu H P. Mater Sci Technol, 2004; 12: 327

(江洪伟, 李春峰, 赵志衡, 李忠, 于海平. 材料科学与工艺, 2004; 12: 327)

[9] Licf, Zhao Z H. J Mater Process Technol, 2002; 123: 225

[10] Zhang H O, Wang G L, Wei Z C. Chin Pat, 200810197001.4, 2008

(张海鸥, 王桂兰, 韦忠朝. 中国专利, 200810197001.4, 2008)

[11] David W, James F. ISIJ Int, 1989; 29: 1016

[12] Wang H M, Chen G X, Ren Z M, Lei Z S, Li G R, Xia X J, Dai Q X. Foundry Technol, 2006; 27: 737

(王宏明, 陈国星, 任忠鸣, 雷作胜, 李桂荣, 夏小江, 戴起勋. 铸造技术, 2006; 27: 737)

[13] Liu D J. Shonghai Steel Iron Res, 1996; 4: 47

(刘大均. 上海钢研, 1996; 4: 47)

[14] Wang L, Felicelli S. Trans ASME J Manuf Sci Eng, 2007; 129: 1028
[1] DENG Anyuan WANG Engang XU Yongyi ZHANG Xingwu HE Jicheng. EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD[J]. 金属学报, 2010, 46(8): 1018-1024.
No Suggested Reading articles found!