Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 462-468    DOI: 10.3724/SP.J.1037.2010.00534
论文 Current Issue | Archive | Adv Search |
FLOW SOFTENING MECHANSIM OF A Ti ALLOY WITH LAMELLAR STRUCTURE DURING SUBTRANSUS DEFORMATION
SONG Hongwu1), ZHANG Shihong1), CHENG Ming1), LI Zhenxi2), CAO Chunxiao2), BAO Chunling3)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Beijing Institute of Aeronautical Materials, Beijing 100095
3) Titanium Alloy Division, Shenyang Research Institute of Foundry, Shenyang 110023
Download:  PDF(976KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The flow stress has a considerable flow softening after a peak strain hardening at very low strains for Ti alloys with lamellar structure during subtransus deformation. In order to study the mechanism of such flow softening behavior, the deformation behavior of TC11 Ti alloy with a lamellar structure was studied using isothermal hot compression tests under a temperature range of 890-995 ℃ and a strain rate range of 0.01-10 s-1. Theoretical calculation shows the Hall-Petch strengthening effects induced by α/β  interface as well as the twin boundary in $\alpha$ lamellar are far more significant than that of the colony boundary. The flow softening can be related to reduction of Hall-Petch strengthening effects due to transfer from the hard slip mode to the soft one.
Key words:  TC11 Ti alloy      subtransus deformation      flow softening      Hall-Petch effect     
Received:  11 October 2010     
Fund: 

Supported by National Basic Research Program of China (No.51319)

Cite this article: 

SONG Hongwu ZHANG Shihong CHENG Ming LI Zhenxi CAO Chunxiao. FLOW SOFTENING MECHANSIM OF A Ti ALLOY WITH LAMELLAR STRUCTURE DURING SUBTRANSUS DEFORMATION. Acta Metall Sin, 2011, 47(4): 462-468.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00534     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/462

[1] Shechtman D, Eylon D. Metall Trans, 1978; 9A: 1018

[2] Semiatin S L, Lahoti G D. Metall Trans, 1981; 12A: 1705

[3] Semiatin S L, Seetharaman V, Ghosh A K. Philos Trans Royal Soc London, 1999; 357A: 1487

[4] Seshacharyulu T, Medeiros S C, Morgan J T. Mater Sci Eng, 2000; A279: 289

[5] Miller R M, Bieler T R, Semiatin S L. Scr Mater, 1999; 40: 1387

[6] Kim S M, Kim J, Shin D H, Ko Y G, Lee C S, Semiatin S L. Scr Mater, 2004; 50: 927

[7] Wanjara P, Jahazi M, Monajati H, Yue S, Immarigeon J P. Mater Sci Eng, 2005; A396: 50

[8] Pan Y Q, Yang Z S. Rare Met Mater Eng, 1992; 21(3): 18

(潘雅琴, 杨昭苏. 稀有金属材料与工程, 1992; 21(3): 18)

[9] Wu B J, Chen S C. Forging Technol, 1992; 17(2): 11

(吴伯杰, 陈森灿. 锻压技术, 1992; 17(2): 11)

[10] Sun X J, Bai B Z, Gu J L, Chen N P. Rare Met, 2000; 24(3): 171

(孙新军, 白秉哲, 顾家琳, 陈南平. 稀有金属, 2000; 24(3): 171)

[11] Chen H Q, Lin H, Guo L, Cao C X. Mater Eng, 2007; (8): 32

(陈慧琴, 林海, 郭灵, 曹春晓. 材料工程, 2007; (8): 32)

[12] Semiatin S L, Beiler T R. Metall Mater Trans, 2001; 32A: 1787

[13] Semiatin S L, Beiler T R. Metall Mater Trans, 2001; 32A: 1871

[14] Beiler T R, Semiatin S L. Int J Plast, 2002: 18: 1165

[15] Semiatin S L, Beiler T R. Acta Mater, 2001; 49: 3565

[16] Ko Y G, Hwang D Y, Shin D H, Lee S, Lee C S. Mater Sci Eng, 2008; A493: 164

[17] Oh S I, Semiatin S L, Jonas J J. Metall Trans, 1992; 23A: 963

[18] Yan S C, Cheng M, Zhang S H, Zhang H Y, Zhang W H, Zhang L W. Chin J Mater Res, 2009; 24: 239

(闫士彩, 程明, 张士宏, 张海燕, 张伟红, 张立文. 材料研究学报, 2009; 24: 239)

[19] Suri S, Viswanathan G B, Neeraj T, Hou D H, Mills M J. Acta Mater, 1999; 47: 1019

[20] Venkataramani G, Kirane K, Ghosh S. Int J Plast, 2008; 24: 428

[21] Song H W, Zhang S H, Cheng M. Trans Nonferrous Met Soc China, 2010; 20: 2168

[22] Paton N E, Backofen W A. Metall Trans, 1970; 1A: 2839

[23] Eshelby J D. Phys Status Solidi, 1963; 3: 2057

[24] Beijing Institute of Aeronautical Materials. Materials Data Handbook. Beijing: China National Aero–engine Company Ltd, 2000: 1277

(北京航空材料研究院. 材料数据手册. 北京: 中国航空发动机有限公司出版, 2000: 1277)

[25] Song H W, Zhang S H, Cheng M, Men F, Bao C L. Int J Modern Phy, 2009; 23B: 875

[26] Savage M F, Tatalovich J, Zupan M, Hemker K J, Mills M J. Mater Sci Eng, 2001; A319–321: 398

[27] Salem A A, Semiatin S L. Mater Sci Eng, 2009; A508: 114
[1] SU Zuwu; YAO Zekun; GUO Hongzhen; LIU Jianchao(Northwestern Polytechnical University; Xi'an 710072); LIU Jianyu; CUI Jian(Beijing Institute of Aeronautical Materials; Beijing 100095); LIU Guoqing; JIANG Ming; YING Zhiyi(Anda Forging Plant; Anshun; Guizhou 561005) (Manuscript received 1995-08-17; in revised form 1995-11-06). NEW PROCESS FOR TC11 Ti ALLOY DUAL PROPERTY DISK[J]. 金属学报, 1996, 32(4): 377-381.
[2] ZHOU Yu;ZHOU Yigang;YU Hanqing Northwestern Polytechnical University; Xi'an. CLEAVAGE RUPTURE OF TCll Ti ALLOY UNDER FATIGUE-CREEP INTERACTION[J]. 金属学报, 1992, 28(3): 38-41.
[3] SU Zuwu;MENG Guowen;GUO Hongzhen;LIU Jianchao;YAO Zekun Northwestern Polytechnical University; Xi'an; YANG Zhaosu;HU Zongshi Baoji Non Ferrous Metals Mill. TECHNOLOGICAL STUDIES ON EQUIAXED GRAIN REFINEMENT IN TC11 Ti ALLOY BAR[J]. 金属学报, 1991, 27(5): 79-82.
No Suggested Reading articles found!