Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (7): 857-861    DOI: 10.3724/SP.J.1037.2010.00088
论文 Current Issue | Archive | Adv Search |
PREPARATION OF NANOSTRUCTURE MnO$_{\bf 2}$ SINGLE CRYSTAL IN VARIOUS ACID SOLUTION
CHEN Yong1, 2), HONG Yuzhen1, 2), MA Yanping1, 2), YANG Hao1, 2), LI Jianbao1, 2)
1) Hainan Provincial Key Laboratory of Research on Utilization of Si--Zr--Ti Resources, Hainan University, Haikou 570228
2) Ministry of Education Key Laboratory of Application Technology of Hainan Superior Resources Chemical Materials, Hainan University, Haikou 570228
Cite this article: 

CHEN Yong HONG Yuzhen MA Yanping YANG Hao LI Jianbao. PREPARATION OF NANOSTRUCTURE MnO$_{\bf 2}$ SINGLE CRYSTAL IN VARIOUS ACID SOLUTION. Acta Metall Sin, 2010, 46(7): 857-861.

Download:  PDF(782KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanostructure MnO2 single crystal was prepared through redox reactions of potassium permanganate in different inorganic acid (hydrochloric acid, sulfuric acid and nitric acid) and organic acid (acetate). The products were characterized by TEM and XRD. It indicated that the crystal structure and morphology of the synthesized MnO2 can be tailored by adjusting the pH value in solution and reaction temperature. It was also found that layer folded δ-MnO2 microspheres were obtained at low reaction temperature and low hydrochloric acid concentration, whereas α-MnO2 single-crystal nanorods were fabricated with increased reaction temperature and hydrochloric acid concentration. The possible formation mechanism of δ-MnO2 microspheres and α-MnO2 nanorods is also discussed.

Key words:  MnO2      nanostructures      redox reaction     
Received:  11 February 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.50762003) and Natural Science Foundation of Hainan Province (No.807009)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00088     OR     https://www.ams.org.cn/EN/Y2010/V46/I7/857

[1] Liao M Y, Lin J M, Wang J H, Yang C T, Chou T L, Mok B H. Electrochem Commun, 2003; 5: 312
[2] Reddy R N, Reddy R G. J Power Sources, 2004; 132: 315
[3] Ataherian F, Zolfaghari A, Jafari S M, Ghaemi M. Electrochim Acta, 2008; 53: 4607
[4] Park M S, Yoon W Y. J Power Sources, 2003; 114: 237
[5] Manickam M, Singh P, Issa T B, Thurgate S, Marco R D. J Power Sources, 2004; 130: 254
[6] Sugantha M, Ramakrishnan P A, Hermann A M, Warmsingh C P, Ginley D S. Int J Hydrogen Energy, 2003; 28: 597
[7] Ghaemi M, Gholami A, Moghaddam R B. Electrochim Acta, 2008; 53: 3250
[8] Reddy A L M, Shaijumon M M, Gowda S R, Ajayan P M. Nano Lett, 2009; 9: 1002
[9] Devaraj S, Munichandraiah N. J Phys Chem, 2008; 112C: 4406
[10] Wang X, Li Y D. J Am Chem Soc, 2002; 124: 2880
[11] Wang X, Li Y D. Chem Eur J, 2003; 9: 300
[12] Xiao T D, Bokhimi X, Benaissa M, Perez R, Strutt P R, Yacaman M J. Acta Mater, 1997; 45: 1685
[13] Yuan Z Y, Zhang Z, Du G, Ren T Z, Su B L. Chem Phys Lett, 2003; 378: 349
[14] Wang X, Li Y. J Am Chem Soc, 2002; 124: 2880
[15] Zhang Y, Chen L, Zheng Z, Yang F. Solid State Sci, 2009; 11: 1265
[16] Huang X, Lv D, Yue H, Attia A, Yang Y. Nanotechnology, 2008; 19: 225606
[17] Wei M, Konishi Y, Zhou H, Sugihara H, Aiakawa H. Nanotechnology, 2005; 16: 245
[18] Chen Y, Liu C, Li F, Cheng H M. J Alloys Compd, 2005; 397: 282
[19] Chen Y, Hong Y, Ma Y, Li J. J Alloys Compd, 2010; 490: 331
[20] Kijima N, Yasuda H, Sato T, Yoshimura Y. J Solid State Chem, 2001; 159: 94
[21] Muraoka Y, Chiba H, Atou T, Kikuchi M, Hiraga K, Syono Y. J Solid State Chem, 1999; 144: 136

No related articles found!
No Suggested Reading articles found!