Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (8): 1009-1017    DOI: 10.3724/SP.J.1037.2009.00869
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION ON UNSTEADY STATE HEAT TRASFER OF WORK ROLLS DURING CONTINUOUS HOT STRIP ROLLING
FENG Mingjie, WANG Engang, HE Jicheng
Key Laboratory of National Education Ministry for Electromagnetic Processing of Materials, Northeastern University, Shenyang 110819
Cite this article: 

FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON UNSTEADY STATE HEAT TRASFER OF WORK ROLLS DURING CONTINUOUS HOT STRIP ROLLING. Acta Metall Sin, 2010, 46(8): 1009-1017.

Download:  PDF(1397KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The spreading properties of unsteady state temperature wave, heating flux wave and heating shock phenomena during continuous hot slab rolling have been numerically simulated for three types of commonly used composite rolls by use of various coordinate systems and user–defined functions based on Fluent 6.3 software. The results indicate that the temperature wave can be divided into a high–frequency and low–frequency unsteady state temperature wave to describe the temperature distribution and spreading properties in rolls. It is found that the wave amplitude of the high–frequency temperature wave will quickly decrease with the increase of propagation depth, and its propagation depth of maximum impact is less than 7.5 mm. But, under the same rolling conditions, the amplitude attenuation of the low–frequency temperature wave is slower, and its propagation depth of impact is more than 20 mm. The heating shock decreases rapidly with the increase of distance from the surface of work roll. The heating shock depth is the deepest for the high speed steel composite roll, but the shallowest for the high nicked chromium cast iron composite roll under the same rolling conditions. The absorbed and resided heat by work–rolls during each slab hot rolling is down, but the dissipated heat by rolls is up with rolled slab number increasing.

Key words:  hot rolling      composite roll      temperature wave      heating shock      heating flux wave     
Received:  30 December 2009     
Fund: 

Supported by National High Technical Research and Development Programme of China (No.2003AA331050) and National Natural Science Foundation of China (No.200809123)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00869     OR     https://www.ams.org.cn/EN/Y2010/V46/I8/1009

[1] Twadoh S, Mori T. ISIJ Int, 1992; 32: 1131
[2] Kudo T, Kawashima S, Kurahashi R. ISIJ Int, 1992; 32: 1190
[3] Parke D M, Baker L L. Iron Steel Eng, 1972; 211: 83
[4] Devadas C, Samarasekara V. Ironmaking Steelmaking, 1986; 13: 311
[5] Teseng A A, Lin F H, Gunderia A S, Ni D S. Metall Trans, 199020A: 2305
[6] Lin Z, Chen C. Mater Process Technol, 1995; 49: 125
[7] Guo Z F, Xu J Z, Li C S, Liu X H. Northeast Univ (Nat Sci), 2008; 29: 517
(郭忠峰, 徐建忠, 李长生, 刘相华. 东北大学学报(自然科学版), 2008; 29: 517)
[8] Yang L P, Liu H M, Peng Y, Wang Y R. Iron Steel, 2005; 40(10): 38
(杨利坡, 刘宏民, 彭艳, 王英睿. 钢铁, 2005; 40(10): 38)
[9] Wang L Y, Wang Y K, Iron Steel, 1995; 30(5): 22
(汪凌云, 王业科. 钢铁, 1995; 30(5): 22)
[10] Guo Z F, Li C S, Xu J Z, Liu X H, Wang G D. Iron Steel Res, 2006; 13(6): 27
[11] Chen B G, Chen X L. Iron Steel, 1991; 26(8): 40
(陈宝官, 陈先霖. 钢铁, 1991; 26(8): 40)
[12] Gao J H, Huang C Q, Wang M, Huang J P. Plast Eng, 2009; 16: 218
(高建红, 黄传清, 王敏, 黄建平. 塑性工程学报, 2009; 16: 218)
[13] Du F S, Yu H, Guo Z N. Plast Eng, 2005; 12: 78
(杜凤山, 于辉, 郭振宁. 塑性工程学报, 2005; 12: 78)
[14] Serajzadeh A, Taheri A K, Mucciardi F. Int Mech Sci, 2002; 44: 2447
[15] Saboonchi A, Abbaspour M. Mater Process Technol, 2004; 148: 35

[1] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[2] LIU Mengying, CHANG Hai, XU Feng, XU Zhengfang, YANG Zhao, WANG Ning, GAN Weimin, FENG Qiang. MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF TC1 ALLOY FABRICATED BY PLASMA ARC COLD HEARTH MELTING DURING ROLLING PROCESS[J]. 金属学报, 2015, 51(3): 341-348.
[3] YAN Mengqi QIAN Hao YANG Ping SONG Huijun SHAO Yuanyuan MAO Weimin. BEHAVIORS OF BRASS TEXTURE AND ITS INFLUENCE ON GOSS TEXTURE IN GRAIN ORIENTED ELECTRICAL STEELS[J]. 金属学报, 2012, 48(1): 16-22.
[4] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADING I. Graphite Mould Method[J]. 金属学报, 2011, 47(12): 1495-1502.
[5] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADDING
II. Copper Mould Method
[J]. 金属学报, 2011, 47(12): 1503-1512.
[6] XIE Hongbiao GAO Yanan WANG Tao XIAO Hong. EFFECT OF MULTIPASS HOT ROLLING ON THE PROPERTY AND BONDING INTERFACE OF CLAD BAR[J]. 金属学报, 2011, 47(12): 1513-1519.
[7] Chen Hongmei; Suk-Bong Kang; Huashun Yu; Guanghui Min. Microstructure and performance of AZ4.51-Ca magnesium alloy sheets[J]. 金属学报, 2008, 44(4): 397-402 .
[8] LI Longfei. INFLUENCE OF THE PARTIAL SUBSTITUTION OF SI BY AL ON THE MICROSTRUCTURE OF THE HOT ROLLING TRIP STEELS BASED ON DYNAMIC TRANSFORMATION OF UNDERCOOLED AUSTENITE[J]. 金属学报, 2008, 44(11): 1292-1298 .
[9] ;. Microstructure and mechanical properties of spray-formed AZ91 alloy[J]. 金属学报, 2007, 42(1): 23-26 .
No Suggested Reading articles found!