Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (10): 1449-1468    DOI: 10.11900/0412.1961.2024.00396
Overview Current Issue | Archive | Adv Search |
Post-Treatment Technologies of Cold Spray and Their Research Advance
LIU Ruiliang(), LIU Quanli, LI Fulin
Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Cite this article: 

LIU Ruiliang, LIU Quanli, LI Fulin. Post-Treatment Technologies of Cold Spray and Their Research Advance. Acta Metall Sin, 2025, 61(10): 1449-1468.

Download:  HTML  PDF(5334KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cold spray is a solid deposition technology that utilises supersonic airflow to accelerate solid powder particles, facilitating the coating or fabrication of bulk materials through plastic deformation from high-speed impacts. During the cold spraying process, materials remain in a solid state, thus avoiding problems such as oxidation, grain growth, and phase transformation that can occur with high temperatures in thermal spraying. This makes cold spray particularly suitable for temperature-sensitive materials such as aluminium, copper, titanium, and other metals. In addition, this method can effectively deposit materials and coatings that are challenging to handle with traditional techniques including nickel-based high-temperature alloys and novel high-entropy alloys. Despite its many advantages, including its use with a wide range of materials for repairing and coating fabrication and its application to additive manufacturing, cold spray faces challenges such as low coating density, inhomogeneous microstructures, and weak adhesive coating strength. However, the microstructure and properties of coatings and materials can be effectively enhanced through the pretreatment of powders and/or post-treatment of the coatings and materials. This leads to the high-quality preparation and performance of coatings or materials. Under this context, this article provides a comprehensive review of the types, characteristics, and research advancements in post-treatment technologies for cold spraying. It covers various documented post-treatment methods, including heat treatment, laser remelting, induction remelting, hot isostatic pressing, hot rolling, friction stir, and electric pulse, applied to cold-sprayed coatings or materials, which encompass pure metals and their alloys, stainless steel, high-entropy alloys, and composite materials. Specifically, the article aims to summarize and analyze the advantages, characteristics, and existing challenges of various post-treatment technologies, while also exploring future research directions in this field.

Key words:  cold spray      coating      additive manufacturing      post-treatment technology      microstructure     
Received:  21 November 2024     
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(52371060);Natural Science Foundation of Heilongjiang Province(LH2023E060)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00396     OR     https://www.ams.org.cn/EN/Y2025/V61/I10/1449

Fig.1  Schematics of structural transformation of dense and porous cold sprayed coatings during heat treatment process[6]
(a) mixing (b) diffusion (c) recrystallization (d) growth
Fig.2  Schematics of microstructure evolution of deformed Ti6Al4V particles in cold spray (CS) deposition coating during high temperature heat treatment (HT) (IPB—inter-particle bonding)[44] (a) and Cu grain evolutions during annealing process[38] (b1-b3)
(b1) grains in as-sprayed copper coating
(b2) uniformly grown grains after optimal annealing
(b3) abnormally grown grains over optimal annealing temperature
Fig.3  Microstructure evolutions of cold spray 316L stainless steel coatings after heat treatment at different temperatures and time[48]
Fig.4  Low (a-d) and high (e-g) magnified SEM images showing cross-sectional morphologies of Al-Si coatings before and after remelting under different laser powers[53]
(a) after cold spraying (b) 200 W (c, e-g) 250 W (d) 300 W
Fig.5  Low (a, c, e) and high (b, d, f) magnified SEM images showing surface morphologies of IN718 coating under different post-treatment processes[61] (Yellow circles in Figs.5b, d, and f represent separated and bonded particles in the coatings)
(a, b) cold spraying (c, d) heat treatment (e, f) induction remelting
Fig.6  SEM images showing microstructures of Ti-48Al alloys before (a) and after (b) hot isostatic pressing (HIP)[73]
Fig.7  Flow charts of Mg/Al composite plate prepared by cold spraying and hot rolling[81] (ND—normal direction, TD—transverse direction, RD—rolling direction)
Fig.8  Cross-sectional macrostructure (a) and EBSD analyses at top (b1-b3), middle (c1-c3), and bottom (d1-d3) zones in cold spray-friction stir processing composite additive manufacturing (CFAM) samples[91] (BD—direction perpendicular to the surface of the sample, PD—moving direction of friction stir processing (FSP), HAGBs—high angle grain boundaries, LAGBs—low angle grain boundaries)
(b1-d1) inverse pole figures (IPFs) (b2-d2) grain boundary maps (b3-d3) kernel average misorientation (KAM) maps
Fig.9  Schematics of progressive coating deposition during continuous FSP treatment[11] (Fz—normal force)
Fig.10  Low (a, c) and high (b, d) magnified SEM images of cold sprayed Cu deposits before (a, b) and after (c, d) electric pulse treatment (EPT)[14]
[1] Grujicic M, Zhao C L, DeRosset W S, et al. Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process [J]. Mater. Des., 2004, 25: 681
[2] Bae G, Xiong Y M, Kumar S, et al. General aspects of interface bonding in kinetic sprayed coatings [J]. Acta Mater., 2008, 56: 4858
[3] Judas J, Zapletal J, Adam O, et al. Microstructural stability and precipitate evolution of thermally treated 7075 aluminum alloy fabricated by cold spray [J]. Mater. Charact., 2024, 216: 114259
[4] Judas J, Zapletal J, Řehořek L, et al. Effects of annealing temperature on microstructure and mechanical properties of cold sprayed AA7075 [J]. Procedia Struct. Integr., 2023, 43: 160
[5] Xie X L, Chen C Y, Chen Z, et al. Effect of annealing treatment on microstructure and mechanical properties of cold sprayed TiB2/AlSi10Mg composites [J]. Surf. Interfaces, 2021, 26: 101341
[6] Huang R Z, Sone M, Ma W H, et al. The effects of heat treatment on the mechanical properties of cold-sprayed coatings [J]. Surf. Coat. Technol., 2015, 261: 278
[7] Huang C J, Arseenko M, Zhao L, et al. Property prediction and crack growth behavior in cold sprayed Cu deposits [J]. Mater. Des., 2021, 206: 109826
[8] Yang K, Li W Y, Yang X W, et al. Effect of heat treatment on the inherent anisotropy of cold sprayed copper deposits [J]. Surf. Coat. Technol., 2018, 350: 519
[9] Winnicki M, Baszczuk A, Gibas A, et al. Experimental study on aluminium bronze coatings fabricated by low pressure cold spraying and subsequent heat treatment [J]. Surf. Coat. Technol., 2023, 456: 129260
[10] Zhang J, Kong D J. Effect of laser remelting on microstructure and immersion corrosion of cold-sprayed aluminum coating on S355 structural steel [J]. Opt. Laser Technol., 2018, 106: 348
[11] Perard T, Sova A, Robe H, et al. Friction stir processing of austenitic stainless steel cold spray coating deposited on 304L stainless steel substrate: Feasibility study [J]. Int. J. Adv. Manuf. Technol., 2021, 115: 2379
[12] Dong T S, Liu L, Li G L, et al. Effect of induction remelting on microstructure and wear resistance of plasma sprayed NiCrBSiNb coatings [J]. Surf. Coat. Technol., 2019, 364: 347
[13] Zhao Z P, Wang Y D, Wang J D, et al. The effects of heat treatment on the microstructure and mechanical properties of cold spraying additive manufacturing Ti [J]. J. Mater. Res. Technol., 2025, 36: 9283.
[14] Wu D, Xu Y X, Li W Y, et al. Fast strength-ductility synergistically adjusting of cold spray additive manufactured Cu deposits via electric pulse processing [J]. Chin. J. Aeronaut., 2024, 37: 558
[15] Peng Y H, Cui X Y, Xiong T Y, et al. Research status of cold spray technology in the field of materials preparation [J]. Mater. China, 2024, 43: 290
彭云辉, 崔新宇, 熊天英 等. 冷喷涂技术在材料制备领域的研究进展 [J]. 中国材料进展, 2024, 43: 290
[16] Yang L J, Li Z X, Huang C L, et al. Producing hard material coatings by laser-assisted cold spray: A technological review [J]. Mater. Rep., 2018, 32: 412
杨理京, 李争显, 黄春良 等. 激光辅助冷喷涂制备高硬度材料涂层的研究进展 [J]. 材料导报, 2018, 32: 412
[17] Li B, Hu Y F, Tian K, et al. An overview on cold spraying technology assisted with laser process [J]. Mater. China, 2024, 43: 115
李 波, 胡耀峰, 田 凯 等. 激光复合冷喷涂技术研究进展 [J]. 中国材料进展, 2024, 43: 115
[18] Ge W X, Li X B, Cheng X D, et al. Research progress of preparation and surface-treatment technology of metal-ceramic composite coatings [J]. Dev. Appl. Mater., 2011, 26(4): 95
葛文祥, 李相波, 程旭东 等. 金属陶瓷涂层制备技术及其后处理工艺研究进展 [J]. 材料开发与应用, 2011, 26(4): 95
[19] Li B, Wang H, Liu B, et al. Microstructure and properties of cold-sprayed metal coating optimized by heat-treatment: A review [J]. Heat Treat. Met., 2023, 48(10): 29
李 波, 王 豪, 刘 博 等. 热处理调控冷喷涂金属沉积层微观特性及性能研究进展 [J]. 金属热处理, 2023, 48(10): 29
[20] Guo W L, Xing Z G, Li P, et al. Research status of cold sprayed Cu-based composite coatings and post-process treatments [J]. Mater. Rep., 2024, 38(19): 192
郭伟玲, 邢志国, 李 鹏 等. 冷喷涂铜基复合涂层及后处理技术的研究现状 [J]. 材料导报, 2024, 38(19): 192
[21] Fu S R, Yang L J, Li Z X, et al. Research progress of Al-matrix composite coatings prepared by cold spraying technique [J]. Surf. Technol., 2020, 49(11): 75
付树仁, 杨理京, 李争显 等. 冷喷涂技术制备Al基复合材料涂层研究进展 [J]. 表面技术, 2020, 49(11): 75
[22] Huang Q, Qin J H, Yu M, et al. Cold spray deposition of non-metallic materials: research progress and perspectives [J]. Jiangxi Sci., 2020, 38: 7
黄 群, 秦加浩, 余 敏 等. 冷喷涂技术制备非金属材料涂层的研究进展 [J]. 江西科学, 2020, 38: 7
[23] Yang J W, Li W Y, Xing C H, et al. Research progress in cold spraying of copper coating [J]. Mater. Prot., 2022, 55(1): 58
杨景文, 李文亚, 邢词皓 等. 冷喷涂铜涂层研究进展 [J]. 材料保护, 2022, 55(1): 58
[24] Wang M Y, Li W Y, Xu Y X, et al. Research progress of cold sprayed cermet wear-resistant coating [J]. Surf. Technol., 2024, 53(10): 28
王明远, 李文亚, 徐雅欣 等. 冷喷涂硬质合金耐磨涂层研究进展 [J]. 表面技术, 2024, 53(10): 28
[25] Fan N S, Jin B Q, Zhang N N, et al. Research progress of cold spraying high-entropy alloys [J]. Mater. Prot., 2022, 55(1): 50
樊柠松, 金冰倩, 张楠楠 等. 冷喷涂制备高熵合金的研究进展 [J]. 材料保护, 2022, 55(1): 50
[26] Deng N, Dong H, Che H Y, et al. The research progress on preparation of metal coatings by cold spraying and its application in additive manufacturing [J]. Surf. Technol., 2020, 49(3): 57
邓 楠, 董 浩, 车洪艳 等. 冷喷涂制备金属涂层及其在增材制造应用中的研究进展 [J]. 表面技术, 2020, 49(3): 57
[27] Zhou H X, Li C X, Li C J. Research progress of cold sprayed Ti and Ti alloy coatings [J]. China Surf. Eng, 2020, 33(2): 1
周红霞, 李成新, 李长久. 冷喷涂制备钛及钛合金涂层研究进展 [J]. 中国表面工程, 2020, 33(2): 1
[28] Li W Y, Zhang Z M, Xu Y X, et al. Research progress of cold sprayed Ni and Ni-based composite coatings: A review [J]. Acta Metall. Sin., 2022, 58: 1
doi: 10.11900/0412.1961.2021.00270
李文亚, 张正茂, 徐雅欣 等. 冷喷涂Ni及镍基复合涂层研究进展 [J]. 金属学报, 2022, 58: 1
doi: 10.11900/0412.1961.2021.00270
[29] Li W Y, Cao C C, Yin S. Solid-state cold spraying of Ti and its alloys: A literature review [J]. Prog. Mater. Sci., 2020, 110: 100633
[30] Yu S Q, Yang X W, Wang F F, et al. Protection for cold sprayed coatings on magnesium alloy [J]. Surf. Technol., 2018, 47(5): 43
虞思琦, 杨夏炜, 王非凡 等. 镁合金表面冷喷涂层防护研究进展 [J]. 表面技术, 2018, 47(5): 43
[31] Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soc. Corr. Prot., 2021, 41: 22
doi: 10.11902/1005.4537.2020.138
郑 黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
[32] Li T F, Wang K, Wu J, et al. Development on cold spray apparatus [J]. Therm. Spray Technol., 2011, 3(2): 15
李铁藩, 王 恺, 吴 杰 等. 冷喷涂装置研究进展 [J]. 热喷涂技术, 2011, 3(2): 15
[33] Xiong T Y, Wang J Q. Research progress of cold spray in Institute of Metal Research, Chinese Academy of Sciences [J]. Acta Metall. Sin., 2023, 59: 537
doi: 10.11900/0412.1961.2022.00552
熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展 [J]. 金属学报, 2023, 59: 537
doi: 10.11900/0412.1961.2022.00552
[34] Chen C Y, Xie Y C, Liu L T, et al. Cold spray additive manufacturing of invar 36 alloy: Microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72: 39
doi: 10.1016/j.jmst.2020.07.038
[35] Siddique S, Bernussi A A, Husain S W, et al. Enhancing structural integrity, corrosion resistance and wear properties of Mg alloy by heat treated cold sprayed Al coating [J]. Surf. Coat. Technol., 2020, 394: 125882
[36] Bhowmik A, Tan A W Y, Sun W, et al. On the heat-treatment induced evolution of residual stress and remarkable enhancement of adhesion strength of cold sprayed Ti-6Al-4V coatings [J]. Results Mater., 2020, 7: 100119
[37] Cao K, Yu M, Liang C M, et al. Study on thermal conductivity of cold sprayed Cu coating [J]. Surf. Eng., 2020, 36: 1058
[38] Seo D, Ogawa K, Sakaguchi K, et al. Parameter study influencing thermal conductivity of annealed pure copper coatings deposited by selective cold spray processes [J]. Surf. Coat. Technol., 2012, 206: 2316
[39] Fan J L, Yun H T, Zhang X Q, et al. High-performance pure aluminum coatings on stainless steels by cold spray [J]. Coatings, 2023, 13: 738
[40] Nourian A, Beamer C, Muftu S. Effects of post-deposition processing on static and cyclic performance of cold sprayed 6061 aluminum alloy [J]. Addit. Manuf., 2024, 88: 104246
[41] Hutasoit N, Javed M A, Rashid R A R, et al. Effects of build orientation and heat treatment on microstructure, mechanical and corrosion properties of Al6061 aluminium parts built by cold spray additive manufacturing process [J]. Int. J. Mech. Sci., 2021, 204: 106526
[42] Ren Y Q, King P C, Yang Y S, et al. Characterization of heat treatment-induced pore structure changes in cold-sprayed titanium [J]. Mater. Charact., 2017, 132: 69
[43] Morks M F, Zahiri S H, Chen X B, et al. Influence of gas temperature and heat treatment on microstructure and properties of cold sprayed commercially pure titanium [J]. J. Mater. Eng. Perform., 2022, 31: 5549
[44] Yang L J, Wang S P, Luo X T, et al. Microstructural nano-scale evolution at inter-particles bonding interface of cold-sprayed Ti6Al4V deposits during heat treatment [J]. J. Therm. Spray Technol., 2023, 32: 2713
[45] Li W W, Xue N, Shao L, et al. Effects of spraying parameters and heat treatment temperature on microstructure and properties of single-pass and single-layer cold-sprayed Cu coatings on Al alloy substrate [J]. Surf. Coat. Technol., 2024, 490: 131184
[46] Tirukandyur S, Kandadai V A S, Ellingsen M, et al. Effect of post-deposition heat treatment on microstructure and mechanical properties of NASA HR-1 cold spray coatings [J]. Surf. Coat. Technol., 2024, 482: 130704
[47] Sun W, Chu X, Huang J B, et al. Solution and double aging treatments of cold sprayed Inconel 718 coatings [J]. Coatings, 2022, 12: 347
[48] Brassart L H, Besson J, Delloro F, et al. Effect of various heat treatments on the microstructure of 316L austenitic stainless steel coatings obtained by cold spray [J]. J. Therm. Spray Technol., 2022, 31: 1725
[49] Meng X M, Zhang J B, Han W, et al. Influence of annealing treatment on the microstructure and mechanical performance of cold sprayed 304 stainless steel coating [J]. Appl. Surf. Sci., 2011, 258: 700
[50] Xue W, Jiang L T, Kang P C, et al. Design and fabrication of a nanoamorphous interface layer in B4C/Al composites to improve hot deformability and corrosion resistance [J]. ACS Appl. Nano Mater., 2020, 3: 5752
[51] Tariq N H, Gyansah L, Wang J Q, et al. Cold spray additive manufacturing: A viable strategy to fabricate thick B4C/Al composite coatings for neutron shielding applications [J]. Surf. Coat. Technol., 2018, 339: 224
[52] Wang J S, Shu L S. Effect of laser remelting path on residual stress and surface quality of remanufactured coatings [J]. Laser Optoelectron. Prog., 2023, 60: 0714010
王家胜, 舒林森. 激光重熔路径对再制造涂层残余应力及表面质量的影响 [J]. 激光与光电子学进展, 2023, 60: 0714010
[53] Kang N, Verdy C, Coddet P, et al. Effects of laser remelting process on the microstructure, roughness and microhardness of in-situ cold sprayed hypoeutectic Al-Si coating [J]. Surf. Coat. Technol., 2017, 318: 355
[54] Astarita A, Genna S, Leone C, et al. Study of the laser remelting of a cold sprayed titanium layer [J]. Procedia CIRP, 2015, 33: 452
[55] Jin L, Xu F, Ma G J, et al. Effect of laser remelting technical parameters on properties of cold sprayed TC4 coatings [A]. International Thermal Spraying Seminar' 2017 (ITSS' 2017) and China National Thermal Spraying Conference' 2017 (CNTSC' 2017) [C]. Shenyang: Thermal Spraying Professional Committee of China Surface Engineering Association, 2017: 8
靳 磊, 许 飞, 马国佳 等. 激光重熔对冷喷涂TC4涂层性能影响研究 [A]. 第二十届国际热喷涂研讨会(ITSS’2017)暨第二十一届全国热喷涂年会(CNTSC’2017)论文集 [C]. 沈阳: 中国表面工程协会热喷涂专业委员会, 2017: 8
[56] Chen Z H, Sun X F, Li Z M, et al. Tribological behavior of cold sprayed Cu402F coating after laser remelting [J]. Surf. Technol., 2017, 46(10): 161
陈正涵, 孙晓峰, 李占明 等. 冷喷涂Cu402F涂层激光重熔表面改性后摩擦学行为 [J]. 表面技术, 2017, 46(10): 161
[57] Sova A, Grigoriev S, Okunkova A, et al. Cold spray deposition of 316L stainless steel coatings on aluminium surface with following laser post-treatment [J]. Surf. Coat. Technol., 2013, 235: 283
[58] Feng L, Ma K, Wang G P, et al. Microstructure and properties of cold spray assisted laser remelting AlCox CrFeNiCu high entropy alloy coating [J]. Chin. J. Rare Met., 2024, 48: 1085
冯 力, 马 凯, 王贵平 等. 冷喷涂辅助激光重熔合成AlCox-CrFeNiCu高熵合金涂层组织与性能 [J]. 稀有金属, 2024, 48: 1085
[59] Luo X T, Xie T, Li C J, et al. Microstructure and properties tailoring of cold sprayed metals [J]. China Surf. Eng, 2020, 33(4): 68
雒晓涛, 谢 天, 李长久 等. 冷喷涂金属的组织与性能调控 [J]. 中国表面工程, 2020, 33(4): 68
[60] Li D T. Study on Microstructure and properties of low-pressure cold spray copper-based materials [D]. Lanzhou: Lanzhou University of Technology, 2020
李洞亭. 低压冷喷涂铜基材料组织性能的研究 [D]. 兰州: 兰州理工大学, 2020
[61] Sun W, Bhowmik A, Tan A W Y, et al. Improving microstructural and mechanical characteristics of cold-sprayed Inconel 718 deposits via local induction heat treatment [J]. J. Alloys Compd., 2019, 797: 1268
[62] Feng L, Wang G P, Ma K, et al. Microstructure and properties of AlCox CrFeNiCu high-entropy alloy coating synthesized by cold spraying assisted induction remelting [J]. Acta Metall. Sin., 2023, 59: 703
冯 力, 王贵平, 马 凯 等. 冷喷涂辅助感应重熔合成AlCox CrFeNiCu高熵合金涂层的显微组织和性能 [J]. 金属学报, 2023, 59: 703
[63] Yao Z L, Xiao G Q, Ma K, et al. Microstructure and properties of AlCrCoFex NiCu high-entropy alloy coating synthesized via cold spraying-assisted induction remelting method [J]. Trans. Indian Inst. Met., 2023, 76: 2063
[64] Liu J J, Ma K, Ding Y T, et al. Microstructure and properties of an FeCoCrAlCu HEA coating synthesized via the induction remelting method [J]. Coatings, 2023, 13: 399
[65] Petrovskiy P, Sova A, Doubenskaia M, et al. Influence of hot isostatic pressing on structure and properties of titanium cold-spray deposits [J]. Int. J. Adv. Manuf. Technol., 2019, 102: 819
[66] Sun Z W, Ma J Y, Chu X, et al. Preparation of dense TiAl intermetallics by cold spraying precursor-hot isostatic pressing [J]. Mater. Res. Appl., 2024, 18: 649
孙忠武, 马佳艳, 褚 欣 等. 冷喷涂前驱体-热等静压制备致密TiAl金属间化合物 [J]. 材料研究与应用, 2024, 18: 649
[67] Ajjarapu K P K, Barber C, Taylor J, et al. Advancements in 3D printing and hot isostatic pressing of copper: Bridging the gap between green and sintered states for enhanced mechanical and electrical properties [J]. Prog. Addit. Manuf., 2024, 9: 2343
[68] Petrovskiy P, Travyanov A, Cheverikin V V, et al. Effect of encapsulated hot isostatic pressing on properties of Ti6Al4V deposits produced by cold spray [J]. Int. J. Adv. Manuf. Technol., 2020, 107: 437
[69] Petrovskiy P, Khomutov M, Cheverikin V, et al. Influence of hot isostatic pressing on the properties of 316L stainless steel, Al-Mg-Sc-Zr alloy, titanium and Ti6Al4V cold spray deposits [J]. Surf. Coat. Technol., 2021, 405: 126736
[70] Singh P, Singh H, Singh S, et al. Development, characterization and high-temperature oxidation behaviour of hot-isostatic-treated cold-sprayed thick titanium deposits [J]. Machines, 2023, 11: 805
[71] Chen C Y, Xie Y C, Yan X C, et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing [J]. Addit. Manuf., 2019, 27: 595
[72] Shen Y N, Ning X J, Yu X D, et al. The preparation of Ti-Ta impedance-graded coatings with limited diffusion by cold spraying combined with hot isostatic pressing [J]. Coatings, 2024, 14: 565
[73] Ma J Y, Chu X, Xie Y C, et al. Preparation of dense TiAl intermetallics by cold spraying the precursor-hot isostatic pressing [J]. Coatings, 2024, 14: 999
[74] Khomutov M, Chereshneva A, Petrovskiy P, et al. Microstructure of Al-Mg-Sc-Zr alloy cold spray deposits after heat treatment and hot isostatic pressing [J]. J. Alloys Compd., 2021, 858: 157644
[75] Khomutov M, Spasenko A, Sova A, et al. Structure and properties of АА7075-SiC composite parts produced by cold spray additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2021, 116: 847
[76] Qiu X, Tariq N U H, Qi L, et al. In-situ Sip/A380 alloy nano/micro composite formation through cold spray additive manufacturing and subsequent hot rolling treatment: microstructure and mechanical properties [J]. J. Alloys Compd., 2019, 780: 597
[77] Han C. Analysis on current situation of domestic copper strip development and innovation direction of hot rolling technology [J]. Nonferrous Met. Process., 2024, 53(1): 1
韩 晨. 国内铜板带发展现状与热轧技术的创新方向分析 [J]. 有色金属加工, 2024, 53(1): 1
[78] Wu W, Zhang L Y, Zheng Z D, et al. Effect of hot working on properties of cold sprayed aluminum alloy bulk [J]. Heat Treat. Met., 2023, 48(4): 123
doi: 10.13251/j.issn.0254-6051.2023.04.020
吴 畏, 张留艳, 郑之栋 等. 热加工对冷喷涂铝合金块材性能的影响 [J]. 金属热处理, 2023, 48(4): 123
[79] Li Z M, Yang X P, Zhang J B, et al. Interfacial mechanical behavior and electrochemical corrosion characteristics of cold-sprayed and hot-rolled titanium/stainless-steel couples [J]. Adv. Eng. Mater., 2016, 18: 1240
[80] Ye X Y, Yu M, Huang Q, et al. Evolution of microstructures and mechanical properties of cold sprayed copper in hot rolling [J]. J. Therm. Spray Technol., 2023, 32: 2701
[81] Ren Y P, Tariq N U H, Liu H H, et al. Unraveling the effects of hot rolling on microstructure and mechanical properties of cold sprayed Mg/Al clad plates [J]. Mater. Today Commun., 2022, 33: 104553
[82] Zhao Z P, Tang J R, Tariq N U H, et al. Effect of rolling temperature on microstructure and mechanical properties of Ti/steel clad plates fabricated by cold spraying and hot-rolling [J]. Mater. Sci. Eng., 2020, A795: 139982
[83] Zhao Z P, Tariq N U H, Tang J R, et al. Influence of annealing on the microstructure and mechanical properties of Ti/steel clad plates fabricated via cold spray additive manufacturing and hot-rolling [J]. Mater. Sci. Eng., 2020, A775: 138968
[84] Zhao Z P, Tariq N U H, Tang J R, et al. Microstructural evolutions and mechanical characteristics of Ti/steel clad plates fabricated through cold spray additive manufacturing followed by hot-rolling and annealing [J]. Mater. Des., 2020, 185: 108249
[85] Qiu X, Qi L, Tang J R, et al. A viable approach to repair neutron shielding B4C/6061 Al composite sheets through cold spray and hot rolling co-treatment [J]. J. Mater. Sci. Technol., 2022, 106: 173
[86] Ji G, Dong X Y, Qiu L S, et al. Influence of friction stir spot processing on grain structure evolution and nanomechanical behavior of cold-sprayed Al coating on Ti substrate [J]. J. Therm. Spray Technol., 2024, 33: 1827
[87] Prangnell P B, Heason C P. Grain structure formation during friction stir welding observed by the ‘stop action technique’ [J]. Acta Mater., 2005, 53: 3179
[88] Ji G, Liu H, Yang G J, et al. Formation of intermetallic compounds in a cold-sprayed aluminum coating on magnesium alloy substrate after friction stir-spot-processing [J]. J. Therm. Spray Technol., 2021, 30: 1464
[89] Wang W, Han P, Wang Y H, et al. High-performance bulk pure Al prepared through cold spray-friction stir processing composite additive manufacturing [J]. J. Mater. Res. Technol., 2020, 9: 9073
doi: 10.1016/j.jmrt.2020.06.034
[90] Sova A, Goriainova I, Feulvarch E, et al. Comparison between friction stir processing and laser remelting processes of cold sprayed metallic composite coatings [J]. Mater. Lett., 2023, 349: 134898
[91] Xiang Y T, Liu Z H, Wang W, et al. High cycle fatigue behavior of bulk 6061Al prepared by cold spray-friction stir processing composite additive manufacturing [J]. Eng. Fract. Mech., 2024, 306: 110255
[92] Jibran W, Wanjara P, Gholipour Baradari J, et al. Localised surface modification of high-strength aluminium-alumina metal matrix composite coatings using cold spraying and friction stir processing [J]. Adv. Appl. Ceram., 2023, 122: 181
[93] Huang C J, Li W Y, Zhang Z H, et al. Modification of a cold sprayed SiCp/Al5056 composite coating by friction stir processing [J]. Surf. Coat. Technol., 2016, 296: 69
[94] Ye D M, Han P, Wang W, et al. Research on cold spray-friction stir processing composite additive manufacturing of CoCrFeNi/6061Al composites and influence law of reinforcement phase [J]. J. Plast. Eng., 2024, 31(3): 206
叶东明, 韩 鹏, 王 文 等. CoCrFeNi/6061Al复合材料冷喷摩擦复合增材制造及增强相影响规律研究 [J]. 塑性工程学报, 2024, 31(3): 206
[95] Khodabakhshi F, Marzbanrad B, Yazdanmehr A, et al. Tailoring the residual stress during two-step cold gas spraying and friction-stir surface integration of titanium coating [J]. Surf. Coat. Technol., 2019, 380: 125008
[96] Li W Y, Wu D, Hu K W, et al. A comparative study on the employment of heat treatment, electric pulse processing and friction stir processing to enhance mechanical properties of cold-spray-additive-manufactured copper [J]. Surf. Coat. Technol., 2021, 409: 126887
[97] Huang C J, Li W Y, Feng Y, et al. Microstructural evolution and mechanical properties enhancement of a cold-sprayed Cu-Zn alloy coating with friction stir processing [J]. Mater. Charact., 2017, 125: 76
[98] Huang C J, Yan X C, Li W Y, et al. Post-spray modification of cold-sprayed Ni-Ti coatings by high-temperature vacuum annealing and friction stir processing [J]. Appl. Surf. Sci., 2018, 451: 56
[99] Xu Y X, Ge J J, Ji B J, et al. Mechanical alloying of cold-sprayed Ni-Nb-Si composite coating by friction stir processing: Improvement in microstructure and resistance against molten silicates corrosion [J]. Surf. Coat. Technol., 2022, 451: 129051
[100] Wang X, Zhang D L, Darsell J T, et al. Manufacturing oxide dispersion strengthened (ODS) steel plate via cold spray and friction stir processing [J]. J. Nucl. Mater., 2024, 596: 155076
[101] Babutskyi A, Mohin M, Chrysanthou A, et al. Effect of electropulsing on the fatigue resistance of aluminium alloy 2014-T6 [J]. Mater. Sci. Eng., 2020, A772: 138679
[1] WANG Hongying, YAO Zhihao, LI Dayu, GUO Jing, YAO Kaijun, DONG Jianxin. Similarities and Differences of Microstructure and Mechanical Properties Between High γ' Content Powder and Wrought Superalloys[J]. 金属学报, 2025, 61(9): 1364-1374.
[2] YOU Shiquan, CUI Gongjun, YANG Rongqian, LIU Yusong, FENG Xiaogang, KOU Ziming. High-Temperature Tribological Performance of Laser Clad MoNiCr Alloy Coatings Reinforced by Si[J]. 金属学报, 2025, 61(9): 1403-1412.
[3] BI Jianhaonan, ZHANG Yan, WANG Zhenyu, ZHOU Shenghao, LIU Yongyue, ZHANG Xiaoyan, WANG Aiying. Effect of Mo Content on the Microstructure, Mechanical and Tribological Properties of CrAlMoN Coatings[J]. 金属学报, 2025, 61(9): 1413-1424.
[4] TAN Ruohan, SONG Yongfeng, CHEN Chao, LI Dan, CHENG Shu, LI Xiongbing. Mesomechanical Modeling and Experimental Study of Effective Elastic Tensors in Additively Manufactured Titanium Alloys[J]. 金属学报, 2025, 61(9): 1438-1448.
[5] YANG Fan, PEI Shichao, LUO Xinrui, CHEN Yuxiang, LI Ningyu, CHANG Yongqin. Microstructure Evolution and Mechanical Properties of 6061 Aluminum Alloy Fabricated by Friction Stir Additive Manufacturing[J]. 金属学报, 2025, 61(8): 1129-1140.
[6] XIAO Wenlong, ZANG Chenyang, GUO Jintao, FENG Jiawen, MA Chaoli. Two-Stage Aging Process of 7A65 Aluminum Alloy Thick Plate Based on In Situ Resistance Method[J]. 金属学报, 2025, 61(8): 1153-1164.
[7] WU Zewei, YAN Junxiong, HU Li, HAN Xiuzhu. Abnormal Rolling Behavior and Deformation Mechanisms of Bimodal Non-Basal Texture AZ31 Magnesium Alloy Sheet at Medium Temperature[J]. 金属学报, 2025, 61(8): 1165-1173.
[8] LI Xue, YU Zheng, XIE Zhiwen, WANG Jinlong, CHEN Minghui, WANG Fuhui. Corrosion Behavior of Heat-Resistant Steels and Its Enamel Coatings in CO2 Atmosphere at 600 oC[J]. 金属学报, 2025, 61(8): 1245-1255.
[9] ZANG Bolin, YANG Yange, CAO Jingyi, XU Fengfeng, YAO Haihua, ZHOU Zheng. Corrosion and Wear Behaviors of Fe-Based Composite Coating with Dual Amorphous Phases[J]. 金属学报, 2025, 61(8): 1267-1275.
[10] XIE Xu, WAN Yibo, ZHONG Ming, ZOU Xiaodong, WANG Cong. Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes[J]. 金属学报, 2025, 61(7): 998-1010.
[11] SUN Huanteng, MA Yunzhu, CAI Qingshan, WANG Jianning, DUAN Youteng, ZHANG Mengxiang. Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact[J]. 金属学报, 2025, 61(7): 1011-1023.
[12] WANG Qiang, LI Xiaobing, HAO Junjie, CHEN Bo, ZHANG Bin, ZHANG Erlin, LIU Kui. Solid-State Phase Transformation Behavior of a Novel Ti-Al-Mn-Nb Alloy[J]. 金属学报, 2025, 61(7): 1060-1070.
[13] HE Jiabao, WANG Liang, ZHANG Chaowei, ZOU Mingke, MENG Jie, WANG Xinguang, JIANG Sumeng, ZHOU Yizhou, SUN Xiaofeng. Effect of Al2O3 Coating on Interface Reaction Between Si-Based Ceramic Core and Ni-Based Single-Crystal Superalloy[J]. 金属学报, 2025, 61(7): 1093-1108.
[14] LI Dayu, YAO Zhihao, ZHAO Jie, DONG Jianxin, GUO Jing, ZHAO Yu. Evolution of Microstructure and Mechanical Properties of FGH4720Li P/M Superalloy Under Near-Service Conditions[J]. 金属学报, 2025, 61(6): 826-836.
[15] HAO Xubang, CHENG Weili, LI Jian, WANG Lifei, CUI Zeqin, YAN Guoqing, ZHAI Kai, YU Hui. Electrochemical Behavior and Discharge Performance of a Low-Alloyed Mg-Ag Alloy as Anode for Mg-Air Battery[J]. 金属学报, 2025, 61(6): 837-847.
No Suggested Reading articles found!