Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (7): 961-978    DOI: 10.11900/0412.1961.2024.00309
Overview Current Issue | Archive | Adv Search |
Research Progress on Heat Load Damage Behavior of Tungsten-Based Materials for Divertor
LUO Laima1,2,3, CHEN Yu1, YAO Gang4, ZHU Xiaoyong1,2,3(), ZHU Dahuan5, WU Yucheng1,2,3
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2 Engineering Research Center of High-Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei 230009, China
3 National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei University of Technology, Hefei 230009, China
4 School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
5 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
Cite this article: 

LUO Laima, CHEN Yu, YAO Gang, ZHU Xiaoyong, ZHU Dahuan, WU Yucheng. Research Progress on Heat Load Damage Behavior of Tungsten-Based Materials for Divertor. Acta Metall Sin, 2025, 61(7): 961-978.

Download:  HTML  PDF(4651KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Limited energy resources cannot meet the long-term developmental needs of human society. As such, nuclear fusion energy is considered a key solution for environmental protection and meeting future energy demands. However, to ensure the reliable operation of fusion reactors, addressing heat load damage to the divertor facing plasma in tokamak devices is crucial. The divertor, an indispensable core component of fusion devices, plays essential roles in these devices, including the removal of heat load generated via scraping layers and radiation and protection of the main vacuum chamber, auxiliary heating systems, and diagnostic systems, thereby ensuring the safe and stable operation of nuclear fusion reactors. Nevertheless, due to harsh operational conditions, the divertor is prone to damage, limiting the stable operation of long-pulse, high-parameter plasmas. W is critical in the divertor of fusion reactors, primarily owing to its high melting point, low physical sputtering rate, low deuterium retention, and excellent mechanical properties, allowing it to perform stably under extreme conditions. However, tungsten materials have several limitations, including a high ductile-brittle transition temperature, a low recrystallization temperature, and susceptibility to activation. Therefore, it is necessary to regulate, modify, and optimize these materials to enhance the performance of plasma-facing materials (PFMs). Such improvements aim to increase their resilience under extreme environments, minimize damage risks under high heat loads, and enhance heat load resistance, thereby ensuring the long-term stable operation of the divertor in fusion reactors and to meet future energy challenges. The working conditions of fusion reactors are extremely harsh, with the divertor region experiencing continuous heat load damage. It typically faces steady-state heat loads with peak values as high as 5-20 MW/m2 and transient heat loads of up to ~2 GW/m2. These heat loads can cause melting and cracking on both sides of the divertor cassette, posing a risk of reactor failure. Consequently, the study of the heat load damage behavior in tungsten-based PFMs as well as development of damage mitigation strategies have become hot topics in fusion research. This paper reviews current research efforts, both domestic and international, related to the damage behavior of pure tungsten, tungsten alloys, and dispersed phase-strengthened tungsten under heat load conditions. Additionally, it summarizes and forecasts the evolution of heat load damage in tungsten-based materials and presents strategies for damage mitigation, thereby providing a reference for future research endeavors.

Key words:  divertor      tungsten-based material      heat load      damage behavior      strategies to inhibit the damage     
Received:  03 September 2024     
ZTFLH:  TG146.1  
Fund: National Key Research and Development Program of China(2019YFE03120002);National Key Research and Development Program of China(2022YFE03140001);National Key Research and Development Program of China(2022YFE03030003);Fundamental Research Funds for the Central Universities(JZ2023HGQB0164);Postdoctoral Fellowship Program of CPSF(GZC20230656);Natural Science Foundation of Anhui Province(2108085J21);Natural Science Foundation of Anhui Province(2308085QE154);Key Research and Development Program of Anhui Province(202104A05020045)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00309     OR     https://www.ams.org.cn/EN/Y2025/V61/I7/961

Fig.1  Schematics of magnetic confinement nuclear fusion Tokamak international thermonuclear experimental reactor (ITER)[2] (a) and divertor structure design[3] (b); and synergistic multi-field coupling loading scenarios of plasma-facing materials (PFMs) in future thermonuclear fusion reactors[13] (DEMO—demonstration plant, ELM—edge localized mode, VED—vertical displacement) (c) and sketch maps showing the general mechanism of crack formation in heat load tests[26] (d1, d2)
Fig.2  Surface SEM images of cracked and melted zones in W after 3 GW/m2 heat loads[27]
(a) 104 pulse of 1 ms at 20 Hz (b1, b2) high magnified SEM images of Fig.2a (c, d) 1 pulse of 13 ms (c) and 14 ms (d), respectively
Fig.3  SEM images showing typical distribution of primary and secondary cracks (a) and cracking on the pure W surface under different heat loads with 1 pulse (b-d)[34]
(b) 0.5 GW/m2 (c) 0.85 GW/m2 (d) 1.25 GW/m2
Fig.4  Low (a, b) and high (a1, b1, b2) magnified surface morphologies of W monoblock in small-scale W monoblock divertor mock-up (SSMU) after high heat loading test (HHFT)[37] (ALMT—allied material, NSCM—nidec sankyo cmi; red arrows represent macro-crack; green, red, and blue rectangles are the high magnified images of the heat-loaded surface)
(a, a1) ALMT-W (b, b1, b2) NSCM-W
Fig.5  Surface SEM images showing recrystallized W (W-Recry.) (a, b) and W prepared by selective electron beam melting (SEBM) with the best parameter set (c, d) before (a, c) and after (b, d) high heat loading test[39]
Alloy

Grain size

μm

Cracked threshold

GW/m2

Ref.
W020.2< 0.22[51]
W030.3< 0.22[52]
W101< 0.22[51]
W303< 0.22[52]
W100100.44-0.55[51]
Table 1  Statistical analyses of the heat load resistance of pure ultra-fine grained W[51,52]
Fig.6  Low and high (insets) magnifed SEM images of surface of pure W (a, c) and W-3%Ta alloy (b, d) after thermal shock tests with background steady state D-plasma exposure under 700 oC base temperature and 0.38 GW/m2 laser power density[58] (RD—rolling direction, TD—transverse direction)
(a, b) 103 pulse (c, d) 105 pulse
Fig.7  Low and high (insets) magnified SEM images of the loaded surfaces under different high heat flux (HHF) densities[61]
(a-c) W-1V alloy (d-f) W-5V alloy (g-i) W-10V alloy
Fig.8  SEM images of pure W (a, a1, c, c1) and W-K alloy (b, b1, d, d1) after heat loading tests without (a, a1, b, b1) and with (c, c1, d, d1) irradiation[68]

Alloy

Heat flux

power density

GW·m-2

Behavior

Ref.

W-K-0.05Y0.62Not cracking[71]
W-K-0.10Y0.62Not cracking[71]
W-K-0.25Y0.50Not cracking[71]
W-K-0.50Y0.50Cracking[71]
Deformed pure W0.33Cracking[72]
ITER-reference W> 0.30Cracking[73]
Table 2  Comparisons of heat load resistances between W-K-xY alloys and pure W on a single thermal shock test[71-73]
Fig.9  Low (a-c) and high (a1-c1) magnified surface FESEM images of pure W (a, a1), W-1.0%TaC alloy (b, b1), and W-1.0%TiC alloy (c, c1) after heat loading test[87] (Inset in Fig.9c1 is the corresponding high magnified image)
Fig.10  Low (a-d) and high (a1-d1) magnified SEM images showing surface morphologies of the W-2.0%Y2O3 composite material after 100 pulses thermal shock experiment with different power densities[88] (ND—normal direction)
(a, a1, b, b1) TD-ND surfaces (c, c1, d, d1) RD-TD surfaces
Fig.11  SEM images showing surface (a, b, d-f) and cross-section (c) morphologies of the samples after heat loading tests
(a-c) W-0.3Y2O3 (a) and W-1.1Y2O3 (b, c) at 0.6 GW/m2[92] (d-f) W-0.5Y2O3-1Mo (d, e) and W-0.5Y2O3-1Ti (f) after high heat load test applying a single shot at 0.9 GW/m2[102]
MaterialApplied surfacePulse numberCracked threshold / (GW·m-2)Ref.
W-0.2%ZrC, rollingRD-TD1000.22-0.33[83]
W-0.5%ZrC, rollingRD-TD1000.22-0.33
W-1.0%TaC, HERF-1000.33-0.44[85]
W-2.0%Y2O3*, rollingRD-TD1000.22-0.33[88]
TD-ND1000.33-0.44
RD-ND100< 0.33[90]
W-0.3%Y2O3, sintering-1> 0.6[92]
W-1.0%La2O3, rollingTD-ND1< 0.22[97]
W-Y2(Ti)O3, SPS-1< 0.30[102]
W-Y2(Mo)O3, SPS-10.60-0.90
W-Y2(Zr)O3, rollingRD–TD1000.3-0.4[103]
W-1.0%La2O3 88%, rolling1> 0.22[106]
W-1.0%TaC, rollingRD–TD1000.33-0.44[107]
W-0.5%TiC, HIPing-100< 0.33[108]
W-1%Y2O3*, HERF-10.55-0.66[109]
W-K-Ti, SPS-100< 0.37[110]
CVD W-11000.28-0.33[111]
Pure W, rollingRD-TD1< 0.22[112]
TD-ND10.22-0.44
RD-TD100< 0.22
Table 3  Comparisons of pure W and tungsten-based materials after transient heat load tests[83,85,88,90,92,97,102,103,106-112]
1 International Energy Agency. World energy outlook 2024 [R]. Paris: International Energy Agency, 2024
2 Kleyn A W, Lopes Cardozo N J, Samm U. Plasma-surface interaction in the context of ITER [J]. Phys. Chem. Chem. Phys., 2006, 8: 1761
pmid: 16633660
3 Hirai T, Escourbiac F, Carpentier-Chouchana S, et al. ITER tungsten divertor design development and qualification program [J]. Fusion Eng. Des., 2013, 88: 1798
4 Barabash V, Akiba M, Mazul I, et al. Selection, development and characterisation of plasma facing materials for ITER [J]. J. Nucl. Mater., 1996, 233-237: 718
5 Guseva M I, Suvorov A L, Korshunov S N, et al. Sputtering of beryllium, tungsten, tungsten oxide and mixed W-C layers by deuterium ions in the near-threshold energy range [J]. J. Nucl. Mater., 1999, 266-269: 222
6 Reiser J, Rieth M, Dafferner B, et al. Tungsten foil laminate for structural divertor applications-basics and outlook [J]. J. Nucl. Mater., 2012, 423: 1
7 Rubel M. Structure materials in fusion reactors: Issues related to tritium, radioactivity and radiation-induced effects [J]. Fusion Sci. Technol., 2010, 57: 474
8 Dicarlo J A, Stanley J T. Energy dependence of electron-induced radiation damage in tungsten [J]. Radiat. Eff., 1971, 10: 259
9 Pitts R A, Bonnin X, Escourbiac F, et al. Physics basis for the first ITER tungsten divertor [J]. Nucl. Mater. Energy, 2019, 20: 100696
10 Wan Y X, Li J G, Liu Y, et al. Overview of the present progress and activities on the CFETR [J]. Nucl. Fusion, 2017, 57: 102009
11 Barrett T R, Ellwood G, Pérez G, et al. Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components [J]. Fusion Eng. Des., 2016: 109-111: 917
12 Coenen J W, Antusch S, Aumann M, et al. Materials for DEMO and reactor applications—Boundary conditions and new concepts [J]. Phys. Scr., 2016, T167: 014002
13 Linke J, Du J, Loewenhoff T, et al. Challenges for plasma-facing components in nuclear fusion [J]. Matter Radiat. Extremes, 2019, 4: 056201
14 Li Y, Morgan T W, Vermeij T, et al. Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating [J]. Nucl. Fusion, 2021, 61: 046018
15 Durif A, Richou M, Kermouche G, et al. Numerical study of the influence of tungsten recrystallization on the divertor component lifetime [J]. Int. J. Fract., 2021, 230: 83
16 Li C J, Zhu D H, Ding R, et al. Numerical analysis of recrystallization behaviors for W monoblock under cyclic high heat flux [J]. Nucl. Mater. Energy, 2022, 32: 101227
17 Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces [J]. Mater. Trans., 2005, 46: 412
18 Konings R J M. Comprehensive Nuclear Materials [M]. Amsterdam: Elsevier, 2012: 551
19 Raffray A R, Nygren R, Whyte D G, et al. High heat flux components-readiness to proceed from near term fusion systems to power plants [J]. Fusion Eng. Des., 2010, 85: 93
20 Mazul I, Alekseev A, Belyakov V, et al. Russian development of enhanced heat flux technologies for ITER first wall [J]. Fusion Eng. Des., 2012, 87: 437
21 Li C J. Study on the surface damages of tungsten under high plasma heat fluxes in Tokamak [D]. Hefei: University of Science and Technology of China, 2020
李长君. 托卡马克等离子体高热流下钨表面损伤行为研究 [D]. 合肥: 中国科学技术大学, 2020
22 Gao B F. Material damage of divertor and limiter and its impact on plasma operation in EAST [D]. Hefei: University of Science and Technology of China, 2023
高彬富. EAST偏滤器和限制器材料损伤及其对等离子体运行影响的研究 [D]. 合肥: 中国科学技术大学, 2023
23 Gao B F, Ding R, Xie H, et al. Plasma-facing components damage and its effects on plasma performance in EAST tokamak [J]. Fusion Eng. Des., 2020, 156: 111616
24 Wu Y C, Yao G, Luo L M, et al. Research progress in heat load damage behavior of tungsten and tungsten base materials for nuclear fusion reactor [J]. Chin. J. Nonferrous Met., 2018, 28: 719
吴玉程, 姚 刚, 罗来马 等. 核聚变堆用钨及钨基材料热负荷损伤行为的研究进展 [J]. 中国有色金属学报, 2018, 28: 719
25 Mcdowell D L. Basic issues in the mechanics of high cycle metal fatigue [J]. Int. J. Fract., 1996, 80: 103
26 Xie Z M, Miao S, Liu R, et al. Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2017, 496: 41
27 Minissale M, Durif A, Kermouche G, et al. Grain growth and damages induced by transient heat loads on W [J]. Phys. Scr., 2021, 96: 124032
28 Seo M, Echols J R, Winfrey A L. Morphological and nanomechanical changes in tungsten in high heat flux conditions [J]. npj Mater. Degrad., 2020, 4: 30
29 Seo M, Wang K, Echols J R, et al. Microstructure deformation and near-pore environment of resolidified tungsten in high heat flux conditions [J]. J. Nucl. Mater., 2022, 565: 153725
30 Gebhart T E, Baylor L R, Rapp J, et al. Characterization of an electrothermal plasma source for fusion transient simulations [J]. J. Appl. Phys., 2018, 123: 033301
31 Gebhart T E, Martine-Rodriguez R A, Baylor L R, et al. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field [J]. J. Appl. Phys., 2017, 122: 063302
32 Yang W H, Jiang S, Chen L, et al. Transient heat thermal load characteristics produced by a three-electrode capillary discharge generator [J]. Phys. Plasmas, 2021, 28: 113503
33 Chen L, Yang W H, Fan H, et al. The injected plasma triggered breakdown of the trigatron spark gap [J]. Phys. Plasmas, 2020, 27: 023501
34 Jiang S, Chen L, Li W H, et al. Evolution of tungsten degradation under different cyclic ELM-like high heat flux plasma [J]. J. Nucl. Mater., 2024, 588: 154762
35 Li W H, He Y Z, Jiang S, et al. Research on corrosion and damage characteristics of tungsten caused by capillary discharge transient high thermal load [J]. Proc. CSEE, 2023, 43: 6914
李伟昊, 贺玉哲, 蒋 仕 等. 毛细管放电瞬态高热负荷对钨靶侵蚀损伤特性研究 [J]. 中国电机工程学报, 2023, 43: 6914
36 Lian Y Y, Liu X, Feng F, et al. Manufacturing and high heat flux testing of brazed flat-type W/CuCrZr plasma facing components [J]. Plasma Sci. Technol., 2016, 18: 184
37 Fukuda M, Seki Y, Ezato K, et al. Effect of cyclic heat loading on pure tungsten for the ITER divertor [J]. J. Nucl. Mater., 2020, 542: 152509
38 Pintsuk G, Missirlian M, Luo G N, et al. High heat flux testing of newly developed tungsten components for WEST [J]. Fusion Eng. Des., 2021, 173: 112835
39 Dorow-Gerspach D, Kirchner A, Loewenhoff T, et al. Additive manufacturing of high density pure tungsten by electron beam melting [J]. Nucl. Mater. Energy, 2021, 28: 101046
40 Majerus P, Duwe R, Hirai T, et al. The new electron beam test facility JUDITH II for high heat flux experiments on plasma facing components [J]. Fusion Eng. Des., 2005, 75-79: 365
41 Yang G Y, Yang P W, Yang K, et al. Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting [J]. Int. J. Refract. Met. Hard Mater., 2019, 84: 105040
42 Zhou X, Liu X H, Zhang D D, et al. Balling phenomena in selective laser melted tungsten [J]. J. Mater. Process. Technol., 2015, 222: 33
43 Zhou X, Liu W. Melting and solidifying behavior in single layer selective laser of pure tungsten powder [J]. Chin. J. Lasers, 2016, 43: 0503006
周 鑫, 刘 伟. 纯钨单层铺粉激光选区熔化/凝固行为 [J]. 中国激光, 2016, 43: 0503006
44 Bose A, Schuh C A, Tobia J C, et al. Traditional and additive manufacturing of a new Tungsten heavy alloy alternative [J]. Int. J. Refract. Met. Hard Mater., 2018, 73: 22
45 Zi X H, Chen C, Wang X J, et al. Spheroidisation of tungsten powder by radio frequency plasma for selective laser melting [J]. Mater. Sci. Technol., 2018, 34: 735
46 Mostafaei A, Elliott A M, Barnes J E, et al. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges [J]. Prog. Mater. Sci., 2021, 119: 100707
47 Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
doi: 10.11900/0412.1961.2018.00404
吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
doi: 10.11900/0412.1961.2018.00404
48 Li P, Lin Q, Zhou Y F, et al. TEM analysis of microstructure evolution process of pure tungsten under high pressure torsion [J]. Acta Metall. Sin., 2019, 55: 521
doi: 10.11900/0412.1961.2018.00165
李 萍, 林 泉, 周玉峰 等. 纯W高压扭转显微组织演化过程TEM分析 [J]. 金属学报, 2019, 55: 521
49 Ganeev A V, Islamgaliev R K, Valiev R Z. Refinement of tungsten microstructure upon severe plastic deformation [J]. Phys. Met. Metall., 2014, 115: 139
50 Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: Top-down and bottom-up-application to tungsten [J]. Mater. Sci. Eng., 2007, A467: 33
51 Zhou Z J, Pintsuk G, Linke J, et al. Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure [J]. Fusion Eng. Des., 2010, 85: 115
52 Zhang X X, Yan Q Z, Lang S T, et al. Thermal shock performance of sintered pure tungsten with various grain sizes under transient high heat flux test [J]. J. Fusion Energy, 2016, 35: 666
53 Zhang X, Tian J, Xue M T, et al. Ta-W refractory alloys with high strength at 2000 oC [J]. Acta Metall. Sin., 2022, 58: 1253
张 旭, 田 谨, 薛敏涛 等. 2000 ℃高温高承载的Ta-W难熔合金 [J]. 金属学报, 2022, 58: 1253
54 Wang Z, Yuan Y, Arshad K, et al. Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys [J]. Fusion Eng. Des., 2017, 125: 496
55 Linke J, Loewenhoff T, Massaut V, et al. Performance of different tungsten grades under transient thermal loads [J]. Nucl. Fusion, 2011, 51: 073017
56 Li B S, Marrow T J, Armstrong D E J. Measuring the brittle-to-ductile transition temperature of tungsten-tantalum alloy using chevron-notched micro-cantilevers [J]. Scr. Mater., 2020, 180: 77
57 Gonderman S, Tripathi J K, Sinclair G, et al. Effects of in situ dual ion beam (He+ and D+) irradiation with simultaneous pulsed heat loading on surface morphology evolution of tungsten-tantalum alloys [J]. Nucl. Fusion, 2018, 58: 026016
58 Nogami S, Wirtz M, Lied P, et al. Thermal shock behavior under deuterium plasma exposure of tungsten-tantalum alloys [J]. Phys. Scr., 2021, 96: 114011
59 Arshad K, Guo W, Wang J, et al. Influence of vanadium precursor powder size on microstructures and properties of W-V alloy [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 59
60 Arshad K, Zhao M Y, Yuan Y, et al. Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys [J]. J. Nucl. Mater., 2014, 455: 96
61 Arshad K, Ding D, Wang J, et al. Surface cracking of tungsten-vanadium alloys under transient heat loads [J]. Nucl. Mater. Energy, 2015, 3-4: 32
62 Cui H J, Liu N, Luo L M, et al. A prospect of using ternary W-5 wt%V-5 wt%Ta alloy manufactured by mechanical alloying and spark plasma sintering as plasma-facing material [J]. J. Alloys Compd., 2022, 903: 163899
63 Zhao B L, Xie Z M, Liu R, et al. Fabrication of an ultrafine-grained W-ZrC-Re alloy with high thermal stability [J]. Fusion Eng. Des., 2021, 164: 112208
64 Du F Y, Xu Y P, Tian Y, et al. Comparative study of microstructural evolution in W-3Re alloy under high-temperature conditions: High heat flux loading versus furnace heating [J]. Nucl. Mater. Energy, 2024, 39: 101646
65 Watanabe S, Nogami S, Reiser J, et al. Tensile and impact properties of tungsten-rhenium alloy for plasma-facing components in fusion reactor [J]. Fusion Eng. Des., 2019, 148: 111323
66 Fukuda M, Nogami S, Hasegawa A, et al. Tensile properties of K-doped W-3%Re [J]. Fusion Eng. Des., 2014, 89: 1033
67 Ma X L, Wang T, Zhang X X, et al. Surface modification and deuterium retention in hot-rolled potassium doped tungsten alloy exposed to deuterium plasma [J]. J. Nucl. Mater., 2022, 568: 153890
68 Ma X L, Feng F, Zhang X X, et al. Effect of Fe11+ ion combined with helium and deuterium plasmas irradiation on the transient thermal shock behaviors of pure and potassium-doped tungsten [J]. J. Nucl. Mater., 2023, 573: 154100
69 Wang Y J, Yan Q Z. Preparation of hot-rolled potassium doped tungsten (KW) thick plate and performance of KW-Cu monoblock mock-ups under high heat flux testing [J]. Nucl. Mater. Energy, 2020, 23: 100744
70 Fu X G, Zheng M X, Liu X, et al. Vacancy-type defects in H + 6%He neutral beam irradiated WK alloy probed by slow positron beam [J]. Phys. Status Solidi, 2022, 219A: 2100497
71 Chen L Q, Li S, Qiu W B, et al. Combining the K-bubble strengthening and Y-doping: Microstructure, mechanical/thermal properties, and thermal shock behavior of W-K-Y alloys [J]. Int. J. Refract. Met. Hard Mater., 2022, 103: 105739
72 Hirai T, Pintsuk G, Linke J, et al. Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures [J]. J. Nucl. Mater., 2009, 390-391: 751
73 Uytdenhouwen I, Decréton M, Hirai T, et al. Influence of recrystallization on thermal shock resistance of various tungsten grades [J]. J. Nucl. Mater., 2007, 363-365: 1099
74 He B, Huang B, Xiao Y, et al. Preparation and thermal shock characterization of yttrium doped tungsten-potassium alloy [J]. J. Alloys Compd., 2016, 686: 298
75 Shi J B, Song J P, Liang M X, et al. Effects of minor rhenium additions on the thermal properties and recrystallization temperature of tungsten alloy [J]. Nucl. Mater. Energy, 2024, 38: 101609
76 Xiao Y, Huang B, He B, et al. Surface morphology and microstructure evolution of trace titanium and yttrium in W-K-Mo-Ti-Y alloys under transient heat loads [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 299
77 Chookajorn T, Park M, Schuh C A. Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W-Cr [J]. J. Mater. Res., 2015, 30: 151
78 Park M, Schuh C A. Accelerated sintering in phase-separating nanostructured alloys [J]. Nat. Commun., 2015, 6: 6858
doi: 10.1038/ncomms7858 pmid: 25901420
79 Tang F W, Liu X M, Wang H B, et al. Solute segregation and thermal stability of nanocrystalline solid solution systems [J]. Nanoscale, 2019, 11: 1813
doi: 10.1039/c8nr09782h pmid: 30631871
80 Du W L, Hou C, Li Y R, et al. Effect of addition of Cr and Sc on high-temperature stability of grain structure in W-based alloys [J]. Acta Metall. Sin., 2024, DOI: 10.11900/0412.1961.2024.00052
杜文力, 侯 超, 李昱嵘 等. Cr和Sc元素对钨基合金晶粒组织高温稳定性的影响 [J]. 金属学报, 2024, DOI: 10.11900/0412.1961.2024.00052
81 Wu Y C, Hou Q Q, Luo L M, et al. Preparation of ultrafine-grained/nanostructured tungsten materials: an overview [J]. J. Alloys Compd., 2019, 779: 926
82 Zhao Z H, Yao G, Luo L M, et al. Anisotropy and stability of the mechanical properties of the W alloy plate reinforced with Y-Zr-O particles and prepared by a wet chemical method [J]. Int. J. Refract. Met. Hard Mater., 2021, 99: 105597
83 Wang M M, Xie Z M, Deng H W, et al. Thermal shock fatigue behaviors of various W-0.5 wt%ZrC materials under repetitive transient heat loads [J]. J. Nucl. Mater., 2020, 534: 152152
84 Feng F, Lian Y Y, Liu X, et al. Transient thermal shock performance of sintered W-TaC by SPS [J]. Rare Met. Mater. Eng., 2017, 46: 3544
封 范, 练友运, 刘 翔 等. SPS烧结W-TaC的耐瞬态热冲击性能 [J]. 稀有金属材料与工程, 2017, 46: 3544
85 Feng F, Lian Y Y, Wang J B, et al. Mechanical properties and thermal shock performance of high-energy-rate-forged W-1%TaC alloy [J]. Crystals, 2022, 12: 1047
86 Tejado E, Martin A, Pastor J Y. Effect of Ti and TiC alloyants on the mechanical properties of W-based armour materials [J]. J. Nucl. Mater., 2019, 514: 238
doi: 10.1016/j.jnucmat.2018.12.001
87 Tan X Y, Li P, Luo L M, et al. Effect of second-phase particles on the properties of W-based materials under high-heat loading [J]. Nucl. Mater. Energy, 2016, 9: 399
88 Yao G, Tan X Y, Luo L M, et al. Surface damage evolution during transient thermal shock of W-2 vol%Y2O3 composite material in different surfaces [J]. Fusion Eng. Des., 2019, 139: 86
89 Shen T L, Dai Y, Lee Y. Microstructure and tensile properties of tungsten at elevated temperatures [J]. J. Nucl. Mater., 2016, 468: 348
90 Yao G, Zhao Z H, Luo L M, et al. Damage evolutions of completely recrystallized W-Y2O3 composite evaluated using the dual effects of electron beam thermal shock and helium ion irradiation [J]. Mater. Chem. Phys., 2021, 271: 124947
91 Lv Y Q, Han Y, Zhao S Q, et al. Nano-in-situ-composite ultrafine-grained W-Y2O3 materials: Microstructure, mechanical properties and high heat load performances [J]. J. Alloys Compd., 2021, 855: 157366
92 Lv Y Q, Fan Y, Zhao S Q, et al. The microstructure evolution, damage behavior and failure analysis of fine-grained W-Y2O3 composites under high transient thermal shock [J]. Int. J. Refract. Met. Hard Mater., 2022, 107: 105905
93 Chen Z, Yang J J, Zhang L, et al. Effect of La2O3 content on the densification, microstructure and mechanical property of W-La2O3 alloy via pressureless sintering [J]. Mater. Charact., 2021, 175: 111092
94 Nogami S, Hasegawa A, Fukuda M, et al. Mechanical properties of tungsten: Recent research on modified tungsten materials in Japan [J]. J. Nucl. Mater., 2021, 543: 152506
95 Zhang X X, Yan Q Z, Yang C T, et al. Microstructure, mechanical properties and bonding characteristic of deformed tungsten [J]. Int. J. Refract. Met. Hard Mater., 2014, 43: 302
96 Shirokova V, Laas T, Ainsaar A, et al. Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterium plasma shots [J]. J. Nucl. Mater., 2013, 435: 181
97 Zhang X X, Yan Q Z. Morphology evolution of La2O3 and crack characteristic in W-La2O3 alloy under transient heat loading [J]. J. Nucl. Mater., 2014, 451: 283
98 Gaudio P, Montanari R, Pakhomova E, et al. W-1%La2O3 submitted to a single laser pulse: effect of particles on heat transfer and surface morphology [J]. Metals, 2018, 8: 389
99 Chen Z, Qin M L, Yang J J, et al. Thermal stability and grain growth kinetics of ultrafine-grained W with various amount of La2O3 addition [J]. Metall. Mater. Trans., 2020, 51A: 4113
100 Kanpara S, Khirwadkar S, Belsare S, et al. Fabrication of tungsten & tungsten alloy and its high heat load testing for fusion applications [J]. Mater. Today: Proc., 2016, 3: 3055
101 Zhao M Y, Zhou Z J, Zhong M, et al. Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies [J]. J. Nucl. Mater., 2016, 470: 236
102 Zhou Z J, Tan J, Qu D D, et al. Basic characterization of oxide dispersion strengthened fine-grained tungsten based materials fabricated by mechanical alloying and spark plasma sintering [J]. J. Nucl. Mater., 2012, 431: 202
103 Yao G, Chen H Y, Luo L M, et al. Enhanced thermal-mechanical properties of rolled tungsten bulk material reinforced by in situ nanosized Y-Zr-O particles [J]. Nucl. Eng. Technol., 2024, 56: 2141
104 Dong Z, Ma Z Q, Liu Y C. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature [J]. Acta Mater., 2021, 220: 117309
105 Liu Z, Yan S, Luo L M, et al. Effect of Hf content on microstructure and properties of ultrafine W-Y2O3 composites prepared by wet chemical method [J]. Chin. J. Nonferrous Met., 2024, 34: 125
刘 祯, 颜 硕, 罗来马 等. Hf含量对湿化学法制备超细W-Y2O3复合材料显微组织与性能的影响 [J]. 中国有色金属学报, 2024, 34: 125
106 Zhang X X, Gong Z, Huang J J, et al. Thermal shock resistance of tungsten with various deformation degrees under transient high heat flux [J]. Mater. Res. Express, 2020, 7: 066503
107 Xie Z M, Miao S, Zhang T, et al. Recrystallization behavior and thermal shock resistance of the W-1.0 wt%TaC alloy [J]. J. Nucl. Mater., 2018, 501: 282
108 Liu X, Lian Y Y, Chen L, et al. Experimental and numerical simulations of ELM-like transient damage behaviors to different grade tungsten and tungsten alloys [J]. J. Nucl. Mater., 2015, 463: 166
109 He C Y, Feng F, Wang J B, et al. Improving the mechanical properties and thermal shock resistance of W-Y2O3 composites by two-step high-energy-rate forging [J]. Int. J. Refract. Met. Hard Mater., 2022, 107: 105883
110 Chen L Q, Huang B, Yang X L, et al. High thermal shock resistance realized by Ti/TiH2 doped tungsten-potassium alloys [J]. J. Alloys Compd., 2019, 780: 388
111 Lian Y Y, liu X, Cheng Z K, et al. Thermal shock performance of CVD tungsten coating at elevated temperatures [J]. J. Nucl. Mater., 2014, 455: 371
112 Zhang X X, Yan Q Z. The thermal crack characteristics of rolled tungsten in different orientations [J]. J. Nucl. Mater., 2014, 444: 428
[1] PENG Wuqingliang, LI Qiang, CHANG Yongqin, WANG Wanjing, CHEN Zhen, XIE Chunyi, WANG Jichao, GENG Xiang, HUANG Lingming, ZHOU Haishan, LUO Guangnan. A Review on the Development of the Heat Sink of the Fusion Reactor Divertor[J]. 金属学报, 2021, 57(7): 831-844.
No Suggested Reading articles found!