|
|
Research Progress on Heat Load Damage Behavior of Tungsten-Based Materials for Divertor |
LUO Laima1,2,3, CHEN Yu1, YAO Gang4, ZHU Xiaoyong1,2,3( ), ZHU Dahuan5, WU Yucheng1,2,3 |
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China 2 Engineering Research Center of High-Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei 230009, China 3 National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei University of Technology, Hefei 230009, China 4 School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China 5 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China |
|
Cite this article:
LUO Laima, CHEN Yu, YAO Gang, ZHU Xiaoyong, ZHU Dahuan, WU Yucheng. Research Progress on Heat Load Damage Behavior of Tungsten-Based Materials for Divertor. Acta Metall Sin, 2025, 61(7): 961-978.
|
Abstract Limited energy resources cannot meet the long-term developmental needs of human society. As such, nuclear fusion energy is considered a key solution for environmental protection and meeting future energy demands. However, to ensure the reliable operation of fusion reactors, addressing heat load damage to the divertor facing plasma in tokamak devices is crucial. The divertor, an indispensable core component of fusion devices, plays essential roles in these devices, including the removal of heat load generated via scraping layers and radiation and protection of the main vacuum chamber, auxiliary heating systems, and diagnostic systems, thereby ensuring the safe and stable operation of nuclear fusion reactors. Nevertheless, due to harsh operational conditions, the divertor is prone to damage, limiting the stable operation of long-pulse, high-parameter plasmas. W is critical in the divertor of fusion reactors, primarily owing to its high melting point, low physical sputtering rate, low deuterium retention, and excellent mechanical properties, allowing it to perform stably under extreme conditions. However, tungsten materials have several limitations, including a high ductile-brittle transition temperature, a low recrystallization temperature, and susceptibility to activation. Therefore, it is necessary to regulate, modify, and optimize these materials to enhance the performance of plasma-facing materials (PFMs). Such improvements aim to increase their resilience under extreme environments, minimize damage risks under high heat loads, and enhance heat load resistance, thereby ensuring the long-term stable operation of the divertor in fusion reactors and to meet future energy challenges. The working conditions of fusion reactors are extremely harsh, with the divertor region experiencing continuous heat load damage. It typically faces steady-state heat loads with peak values as high as 5-20 MW/m2 and transient heat loads of up to ~2 GW/m2. These heat loads can cause melting and cracking on both sides of the divertor cassette, posing a risk of reactor failure. Consequently, the study of the heat load damage behavior in tungsten-based PFMs as well as development of damage mitigation strategies have become hot topics in fusion research. This paper reviews current research efforts, both domestic and international, related to the damage behavior of pure tungsten, tungsten alloys, and dispersed phase-strengthened tungsten under heat load conditions. Additionally, it summarizes and forecasts the evolution of heat load damage in tungsten-based materials and presents strategies for damage mitigation, thereby providing a reference for future research endeavors.
|
Received: 03 September 2024
|
|
Fund: National Key Research and Development Program of China(2019YFE03120002);National Key Research and Development Program of China(2022YFE03140001);National Key Research and Development Program of China(2022YFE03030003);Fundamental Research Funds for the Central Universities(JZ2023HGQB0164);Postdoctoral Fellowship Program of CPSF(GZC20230656);Natural Science Foundation of Anhui Province(2108085J21);Natural Science Foundation of Anhui Province(2308085QE154);Key Research and Development Program of Anhui Province(202104A05020045) |
1 |
International Energy Agency. World energy outlook 2024 [R]. Paris: International Energy Agency, 2024
|
2 |
Kleyn A W, Lopes Cardozo N J, Samm U. Plasma-surface interaction in the context of ITER [J]. Phys. Chem. Chem. Phys., 2006, 8: 1761
pmid: 16633660
|
3 |
Hirai T, Escourbiac F, Carpentier-Chouchana S, et al. ITER tungsten divertor design development and qualification program [J]. Fusion Eng. Des., 2013, 88: 1798
|
4 |
Barabash V, Akiba M, Mazul I, et al. Selection, development and characterisation of plasma facing materials for ITER [J]. J. Nucl. Mater., 1996, 233-237: 718
|
5 |
Guseva M I, Suvorov A L, Korshunov S N, et al. Sputtering of beryllium, tungsten, tungsten oxide and mixed W-C layers by deuterium ions in the near-threshold energy range [J]. J. Nucl. Mater., 1999, 266-269: 222
|
6 |
Reiser J, Rieth M, Dafferner B, et al. Tungsten foil laminate for structural divertor applications-basics and outlook [J]. J. Nucl. Mater., 2012, 423: 1
|
7 |
Rubel M. Structure materials in fusion reactors: Issues related to tritium, radioactivity and radiation-induced effects [J]. Fusion Sci. Technol., 2010, 57: 474
|
8 |
Dicarlo J A, Stanley J T. Energy dependence of electron-induced radiation damage in tungsten [J]. Radiat. Eff., 1971, 10: 259
|
9 |
Pitts R A, Bonnin X, Escourbiac F, et al. Physics basis for the first ITER tungsten divertor [J]. Nucl. Mater. Energy, 2019, 20: 100696
|
10 |
Wan Y X, Li J G, Liu Y, et al. Overview of the present progress and activities on the CFETR [J]. Nucl. Fusion, 2017, 57: 102009
|
11 |
Barrett T R, Ellwood G, Pérez G, et al. Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components [J]. Fusion Eng. Des., 2016: 109-111: 917
|
12 |
Coenen J W, Antusch S, Aumann M, et al. Materials for DEMO and reactor applications—Boundary conditions and new concepts [J]. Phys. Scr., 2016, T167: 014002
|
13 |
Linke J, Du J, Loewenhoff T, et al. Challenges for plasma-facing components in nuclear fusion [J]. Matter Radiat. Extremes, 2019, 4: 056201
|
14 |
Li Y, Morgan T W, Vermeij T, et al. Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating [J]. Nucl. Fusion, 2021, 61: 046018
|
15 |
Durif A, Richou M, Kermouche G, et al. Numerical study of the influence of tungsten recrystallization on the divertor component lifetime [J]. Int. J. Fract., 2021, 230: 83
|
16 |
Li C J, Zhu D H, Ding R, et al. Numerical analysis of recrystallization behaviors for W monoblock under cyclic high heat flux [J]. Nucl. Mater. Energy, 2022, 32: 101227
|
17 |
Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces [J]. Mater. Trans., 2005, 46: 412
|
18 |
Konings R J M. Comprehensive Nuclear Materials [M]. Amsterdam: Elsevier, 2012: 551
|
19 |
Raffray A R, Nygren R, Whyte D G, et al. High heat flux components-readiness to proceed from near term fusion systems to power plants [J]. Fusion Eng. Des., 2010, 85: 93
|
20 |
Mazul I, Alekseev A, Belyakov V, et al. Russian development of enhanced heat flux technologies for ITER first wall [J]. Fusion Eng. Des., 2012, 87: 437
|
21 |
Li C J. Study on the surface damages of tungsten under high plasma heat fluxes in Tokamak [D]. Hefei: University of Science and Technology of China, 2020
|
|
李长君. 托卡马克等离子体高热流下钨表面损伤行为研究 [D]. 合肥: 中国科学技术大学, 2020
|
22 |
Gao B F. Material damage of divertor and limiter and its impact on plasma operation in EAST [D]. Hefei: University of Science and Technology of China, 2023
|
|
高彬富. EAST偏滤器和限制器材料损伤及其对等离子体运行影响的研究 [D]. 合肥: 中国科学技术大学, 2023
|
23 |
Gao B F, Ding R, Xie H, et al. Plasma-facing components damage and its effects on plasma performance in EAST tokamak [J]. Fusion Eng. Des., 2020, 156: 111616
|
24 |
Wu Y C, Yao G, Luo L M, et al. Research progress in heat load damage behavior of tungsten and tungsten base materials for nuclear fusion reactor [J]. Chin. J. Nonferrous Met., 2018, 28: 719
|
|
吴玉程, 姚 刚, 罗来马 等. 核聚变堆用钨及钨基材料热负荷损伤行为的研究进展 [J]. 中国有色金属学报, 2018, 28: 719
|
25 |
Mcdowell D L. Basic issues in the mechanics of high cycle metal fatigue [J]. Int. J. Fract., 1996, 80: 103
|
26 |
Xie Z M, Miao S, Liu R, et al. Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2017, 496: 41
|
27 |
Minissale M, Durif A, Kermouche G, et al. Grain growth and damages induced by transient heat loads on W [J]. Phys. Scr., 2021, 96: 124032
|
28 |
Seo M, Echols J R, Winfrey A L. Morphological and nanomechanical changes in tungsten in high heat flux conditions [J]. npj Mater. Degrad., 2020, 4: 30
|
29 |
Seo M, Wang K, Echols J R, et al. Microstructure deformation and near-pore environment of resolidified tungsten in high heat flux conditions [J]. J. Nucl. Mater., 2022, 565: 153725
|
30 |
Gebhart T E, Baylor L R, Rapp J, et al. Characterization of an electrothermal plasma source for fusion transient simulations [J]. J. Appl. Phys., 2018, 123: 033301
|
31 |
Gebhart T E, Martine-Rodriguez R A, Baylor L R, et al. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field [J]. J. Appl. Phys., 2017, 122: 063302
|
32 |
Yang W H, Jiang S, Chen L, et al. Transient heat thermal load characteristics produced by a three-electrode capillary discharge generator [J]. Phys. Plasmas, 2021, 28: 113503
|
33 |
Chen L, Yang W H, Fan H, et al. The injected plasma triggered breakdown of the trigatron spark gap [J]. Phys. Plasmas, 2020, 27: 023501
|
34 |
Jiang S, Chen L, Li W H, et al. Evolution of tungsten degradation under different cyclic ELM-like high heat flux plasma [J]. J. Nucl. Mater., 2024, 588: 154762
|
35 |
Li W H, He Y Z, Jiang S, et al. Research on corrosion and damage characteristics of tungsten caused by capillary discharge transient high thermal load [J]. Proc. CSEE, 2023, 43: 6914
|
|
李伟昊, 贺玉哲, 蒋 仕 等. 毛细管放电瞬态高热负荷对钨靶侵蚀损伤特性研究 [J]. 中国电机工程学报, 2023, 43: 6914
|
36 |
Lian Y Y, Liu X, Feng F, et al. Manufacturing and high heat flux testing of brazed flat-type W/CuCrZr plasma facing components [J]. Plasma Sci. Technol., 2016, 18: 184
|
37 |
Fukuda M, Seki Y, Ezato K, et al. Effect of cyclic heat loading on pure tungsten for the ITER divertor [J]. J. Nucl. Mater., 2020, 542: 152509
|
38 |
Pintsuk G, Missirlian M, Luo G N, et al. High heat flux testing of newly developed tungsten components for WEST [J]. Fusion Eng. Des., 2021, 173: 112835
|
39 |
Dorow-Gerspach D, Kirchner A, Loewenhoff T, et al. Additive manufacturing of high density pure tungsten by electron beam melting [J]. Nucl. Mater. Energy, 2021, 28: 101046
|
40 |
Majerus P, Duwe R, Hirai T, et al. The new electron beam test facility JUDITH II for high heat flux experiments on plasma facing components [J]. Fusion Eng. Des., 2005, 75-79: 365
|
41 |
Yang G Y, Yang P W, Yang K, et al. Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting [J]. Int. J. Refract. Met. Hard Mater., 2019, 84: 105040
|
42 |
Zhou X, Liu X H, Zhang D D, et al. Balling phenomena in selective laser melted tungsten [J]. J. Mater. Process. Technol., 2015, 222: 33
|
43 |
Zhou X, Liu W. Melting and solidifying behavior in single layer selective laser of pure tungsten powder [J]. Chin. J. Lasers, 2016, 43: 0503006
|
|
周 鑫, 刘 伟. 纯钨单层铺粉激光选区熔化/凝固行为 [J]. 中国激光, 2016, 43: 0503006
|
44 |
Bose A, Schuh C A, Tobia J C, et al. Traditional and additive manufacturing of a new Tungsten heavy alloy alternative [J]. Int. J. Refract. Met. Hard Mater., 2018, 73: 22
|
45 |
Zi X H, Chen C, Wang X J, et al. Spheroidisation of tungsten powder by radio frequency plasma for selective laser melting [J]. Mater. Sci. Technol., 2018, 34: 735
|
46 |
Mostafaei A, Elliott A M, Barnes J E, et al. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges [J]. Prog. Mater. Sci., 2021, 119: 100707
|
47 |
Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
doi: 10.11900/0412.1961.2018.00404
|
|
吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
doi: 10.11900/0412.1961.2018.00404
|
48 |
Li P, Lin Q, Zhou Y F, et al. TEM analysis of microstructure evolution process of pure tungsten under high pressure torsion [J]. Acta Metall. Sin., 2019, 55: 521
doi: 10.11900/0412.1961.2018.00165
|
|
李 萍, 林 泉, 周玉峰 等. 纯W高压扭转显微组织演化过程TEM分析 [J]. 金属学报, 2019, 55: 521
|
49 |
Ganeev A V, Islamgaliev R K, Valiev R Z. Refinement of tungsten microstructure upon severe plastic deformation [J]. Phys. Met. Metall., 2014, 115: 139
|
50 |
Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: Top-down and bottom-up-application to tungsten [J]. Mater. Sci. Eng., 2007, A467: 33
|
51 |
Zhou Z J, Pintsuk G, Linke J, et al. Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure [J]. Fusion Eng. Des., 2010, 85: 115
|
52 |
Zhang X X, Yan Q Z, Lang S T, et al. Thermal shock performance of sintered pure tungsten with various grain sizes under transient high heat flux test [J]. J. Fusion Energy, 2016, 35: 666
|
53 |
Zhang X, Tian J, Xue M T, et al. Ta-W refractory alloys with high strength at 2000 oC [J]. Acta Metall. Sin., 2022, 58: 1253
|
|
张 旭, 田 谨, 薛敏涛 等. 2000 ℃高温高承载的Ta-W难熔合金 [J]. 金属学报, 2022, 58: 1253
|
54 |
Wang Z, Yuan Y, Arshad K, et al. Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys [J]. Fusion Eng. Des., 2017, 125: 496
|
55 |
Linke J, Loewenhoff T, Massaut V, et al. Performance of different tungsten grades under transient thermal loads [J]. Nucl. Fusion, 2011, 51: 073017
|
56 |
Li B S, Marrow T J, Armstrong D E J. Measuring the brittle-to-ductile transition temperature of tungsten-tantalum alloy using chevron-notched micro-cantilevers [J]. Scr. Mater., 2020, 180: 77
|
57 |
Gonderman S, Tripathi J K, Sinclair G, et al. Effects of in situ dual ion beam (He+ and D+) irradiation with simultaneous pulsed heat loading on surface morphology evolution of tungsten-tantalum alloys [J]. Nucl. Fusion, 2018, 58: 026016
|
58 |
Nogami S, Wirtz M, Lied P, et al. Thermal shock behavior under deuterium plasma exposure of tungsten-tantalum alloys [J]. Phys. Scr., 2021, 96: 114011
|
59 |
Arshad K, Guo W, Wang J, et al. Influence of vanadium precursor powder size on microstructures and properties of W-V alloy [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 59
|
60 |
Arshad K, Zhao M Y, Yuan Y, et al. Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys [J]. J. Nucl. Mater., 2014, 455: 96
|
61 |
Arshad K, Ding D, Wang J, et al. Surface cracking of tungsten-vanadium alloys under transient heat loads [J]. Nucl. Mater. Energy, 2015, 3-4: 32
|
62 |
Cui H J, Liu N, Luo L M, et al. A prospect of using ternary W-5 wt%V-5 wt%Ta alloy manufactured by mechanical alloying and spark plasma sintering as plasma-facing material [J]. J. Alloys Compd., 2022, 903: 163899
|
63 |
Zhao B L, Xie Z M, Liu R, et al. Fabrication of an ultrafine-grained W-ZrC-Re alloy with high thermal stability [J]. Fusion Eng. Des., 2021, 164: 112208
|
64 |
Du F Y, Xu Y P, Tian Y, et al. Comparative study of microstructural evolution in W-3Re alloy under high-temperature conditions: High heat flux loading versus furnace heating [J]. Nucl. Mater. Energy, 2024, 39: 101646
|
65 |
Watanabe S, Nogami S, Reiser J, et al. Tensile and impact properties of tungsten-rhenium alloy for plasma-facing components in fusion reactor [J]. Fusion Eng. Des., 2019, 148: 111323
|
66 |
Fukuda M, Nogami S, Hasegawa A, et al. Tensile properties of K-doped W-3%Re [J]. Fusion Eng. Des., 2014, 89: 1033
|
67 |
Ma X L, Wang T, Zhang X X, et al. Surface modification and deuterium retention in hot-rolled potassium doped tungsten alloy exposed to deuterium plasma [J]. J. Nucl. Mater., 2022, 568: 153890
|
68 |
Ma X L, Feng F, Zhang X X, et al. Effect of Fe11+ ion combined with helium and deuterium plasmas irradiation on the transient thermal shock behaviors of pure and potassium-doped tungsten [J]. J. Nucl. Mater., 2023, 573: 154100
|
69 |
Wang Y J, Yan Q Z. Preparation of hot-rolled potassium doped tungsten (KW) thick plate and performance of KW-Cu monoblock mock-ups under high heat flux testing [J]. Nucl. Mater. Energy, 2020, 23: 100744
|
70 |
Fu X G, Zheng M X, Liu X, et al. Vacancy-type defects in H + 6%He neutral beam irradiated WK alloy probed by slow positron beam [J]. Phys. Status Solidi, 2022, 219A: 2100497
|
71 |
Chen L Q, Li S, Qiu W B, et al. Combining the K-bubble strengthening and Y-doping: Microstructure, mechanical/thermal properties, and thermal shock behavior of W-K-Y alloys [J]. Int. J. Refract. Met. Hard Mater., 2022, 103: 105739
|
72 |
Hirai T, Pintsuk G, Linke J, et al. Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures [J]. J. Nucl. Mater., 2009, 390-391: 751
|
73 |
Uytdenhouwen I, Decréton M, Hirai T, et al. Influence of recrystallization on thermal shock resistance of various tungsten grades [J]. J. Nucl. Mater., 2007, 363-365: 1099
|
74 |
He B, Huang B, Xiao Y, et al. Preparation and thermal shock characterization of yttrium doped tungsten-potassium alloy [J]. J. Alloys Compd., 2016, 686: 298
|
75 |
Shi J B, Song J P, Liang M X, et al. Effects of minor rhenium additions on the thermal properties and recrystallization temperature of tungsten alloy [J]. Nucl. Mater. Energy, 2024, 38: 101609
|
76 |
Xiao Y, Huang B, He B, et al. Surface morphology and microstructure evolution of trace titanium and yttrium in W-K-Mo-Ti-Y alloys under transient heat loads [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 299
|
77 |
Chookajorn T, Park M, Schuh C A. Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W-Cr [J]. J. Mater. Res., 2015, 30: 151
|
78 |
Park M, Schuh C A. Accelerated sintering in phase-separating nanostructured alloys [J]. Nat. Commun., 2015, 6: 6858
doi: 10.1038/ncomms7858
pmid: 25901420
|
79 |
Tang F W, Liu X M, Wang H B, et al. Solute segregation and thermal stability of nanocrystalline solid solution systems [J]. Nanoscale, 2019, 11: 1813
doi: 10.1039/c8nr09782h
pmid: 30631871
|
80 |
Du W L, Hou C, Li Y R, et al. Effect of addition of Cr and Sc on high-temperature stability of grain structure in W-based alloys [J]. Acta Metall. Sin., 2024, DOI: 10.11900/0412.1961.2024.00052
|
|
杜文力, 侯 超, 李昱嵘 等. Cr和Sc元素对钨基合金晶粒组织高温稳定性的影响 [J]. 金属学报, 2024, DOI: 10.11900/0412.1961.2024.00052
|
81 |
Wu Y C, Hou Q Q, Luo L M, et al. Preparation of ultrafine-grained/nanostructured tungsten materials: an overview [J]. J. Alloys Compd., 2019, 779: 926
|
82 |
Zhao Z H, Yao G, Luo L M, et al. Anisotropy and stability of the mechanical properties of the W alloy plate reinforced with Y-Zr-O particles and prepared by a wet chemical method [J]. Int. J. Refract. Met. Hard Mater., 2021, 99: 105597
|
83 |
Wang M M, Xie Z M, Deng H W, et al. Thermal shock fatigue behaviors of various W-0.5 wt%ZrC materials under repetitive transient heat loads [J]. J. Nucl. Mater., 2020, 534: 152152
|
84 |
Feng F, Lian Y Y, Liu X, et al. Transient thermal shock performance of sintered W-TaC by SPS [J]. Rare Met. Mater. Eng., 2017, 46: 3544
|
|
封 范, 练友运, 刘 翔 等. SPS烧结W-TaC的耐瞬态热冲击性能 [J]. 稀有金属材料与工程, 2017, 46: 3544
|
85 |
Feng F, Lian Y Y, Wang J B, et al. Mechanical properties and thermal shock performance of high-energy-rate-forged W-1%TaC alloy [J]. Crystals, 2022, 12: 1047
|
86 |
Tejado E, Martin A, Pastor J Y. Effect of Ti and TiC alloyants on the mechanical properties of W-based armour materials [J]. J. Nucl. Mater., 2019, 514: 238
doi: 10.1016/j.jnucmat.2018.12.001
|
87 |
Tan X Y, Li P, Luo L M, et al. Effect of second-phase particles on the properties of W-based materials under high-heat loading [J]. Nucl. Mater. Energy, 2016, 9: 399
|
88 |
Yao G, Tan X Y, Luo L M, et al. Surface damage evolution during transient thermal shock of W-2 vol%Y2O3 composite material in different surfaces [J]. Fusion Eng. Des., 2019, 139: 86
|
89 |
Shen T L, Dai Y, Lee Y. Microstructure and tensile properties of tungsten at elevated temperatures [J]. J. Nucl. Mater., 2016, 468: 348
|
90 |
Yao G, Zhao Z H, Luo L M, et al. Damage evolutions of completely recrystallized W-Y2O3 composite evaluated using the dual effects of electron beam thermal shock and helium ion irradiation [J]. Mater. Chem. Phys., 2021, 271: 124947
|
91 |
Lv Y Q, Han Y, Zhao S Q, et al. Nano-in-situ-composite ultrafine-grained W-Y2O3 materials: Microstructure, mechanical properties and high heat load performances [J]. J. Alloys Compd., 2021, 855: 157366
|
92 |
Lv Y Q, Fan Y, Zhao S Q, et al. The microstructure evolution, damage behavior and failure analysis of fine-grained W-Y2O3 composites under high transient thermal shock [J]. Int. J. Refract. Met. Hard Mater., 2022, 107: 105905
|
93 |
Chen Z, Yang J J, Zhang L, et al. Effect of La2O3 content on the densification, microstructure and mechanical property of W-La2O3 alloy via pressureless sintering [J]. Mater. Charact., 2021, 175: 111092
|
94 |
Nogami S, Hasegawa A, Fukuda M, et al. Mechanical properties of tungsten: Recent research on modified tungsten materials in Japan [J]. J. Nucl. Mater., 2021, 543: 152506
|
95 |
Zhang X X, Yan Q Z, Yang C T, et al. Microstructure, mechanical properties and bonding characteristic of deformed tungsten [J]. Int. J. Refract. Met. Hard Mater., 2014, 43: 302
|
96 |
Shirokova V, Laas T, Ainsaar A, et al. Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterium plasma shots [J]. J. Nucl. Mater., 2013, 435: 181
|
97 |
Zhang X X, Yan Q Z. Morphology evolution of La2O3 and crack characteristic in W-La2O3 alloy under transient heat loading [J]. J. Nucl. Mater., 2014, 451: 283
|
98 |
Gaudio P, Montanari R, Pakhomova E, et al. W-1%La2O3 submitted to a single laser pulse: effect of particles on heat transfer and surface morphology [J]. Metals, 2018, 8: 389
|
99 |
Chen Z, Qin M L, Yang J J, et al. Thermal stability and grain growth kinetics of ultrafine-grained W with various amount of La2O3 addition [J]. Metall. Mater. Trans., 2020, 51A: 4113
|
100 |
Kanpara S, Khirwadkar S, Belsare S, et al. Fabrication of tungsten & tungsten alloy and its high heat load testing for fusion applications [J]. Mater. Today: Proc., 2016, 3: 3055
|
101 |
Zhao M Y, Zhou Z J, Zhong M, et al. Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies [J]. J. Nucl. Mater., 2016, 470: 236
|
102 |
Zhou Z J, Tan J, Qu D D, et al. Basic characterization of oxide dispersion strengthened fine-grained tungsten based materials fabricated by mechanical alloying and spark plasma sintering [J]. J. Nucl. Mater., 2012, 431: 202
|
103 |
Yao G, Chen H Y, Luo L M, et al. Enhanced thermal-mechanical properties of rolled tungsten bulk material reinforced by in situ nanosized Y-Zr-O particles [J]. Nucl. Eng. Technol., 2024, 56: 2141
|
104 |
Dong Z, Ma Z Q, Liu Y C. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature [J]. Acta Mater., 2021, 220: 117309
|
105 |
Liu Z, Yan S, Luo L M, et al. Effect of Hf content on microstructure and properties of ultrafine W-Y2O3 composites prepared by wet chemical method [J]. Chin. J. Nonferrous Met., 2024, 34: 125
|
|
刘 祯, 颜 硕, 罗来马 等. Hf含量对湿化学法制备超细W-Y2O3复合材料显微组织与性能的影响 [J]. 中国有色金属学报, 2024, 34: 125
|
106 |
Zhang X X, Gong Z, Huang J J, et al. Thermal shock resistance of tungsten with various deformation degrees under transient high heat flux [J]. Mater. Res. Express, 2020, 7: 066503
|
107 |
Xie Z M, Miao S, Zhang T, et al. Recrystallization behavior and thermal shock resistance of the W-1.0 wt%TaC alloy [J]. J. Nucl. Mater., 2018, 501: 282
|
108 |
Liu X, Lian Y Y, Chen L, et al. Experimental and numerical simulations of ELM-like transient damage behaviors to different grade tungsten and tungsten alloys [J]. J. Nucl. Mater., 2015, 463: 166
|
109 |
He C Y, Feng F, Wang J B, et al. Improving the mechanical properties and thermal shock resistance of W-Y2O3 composites by two-step high-energy-rate forging [J]. Int. J. Refract. Met. Hard Mater., 2022, 107: 105883
|
110 |
Chen L Q, Huang B, Yang X L, et al. High thermal shock resistance realized by Ti/TiH2 doped tungsten-potassium alloys [J]. J. Alloys Compd., 2019, 780: 388
|
111 |
Lian Y Y, liu X, Cheng Z K, et al. Thermal shock performance of CVD tungsten coating at elevated temperatures [J]. J. Nucl. Mater., 2014, 455: 371
|
112 |
Zhang X X, Yan Q Z. The thermal crack characteristics of rolled tungsten in different orientations [J]. J. Nucl. Mater., 2014, 444: 428
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|