Ta-W Refractory Alloys with High Strength at 2000oC
ZHANG Xu, TIAN Jin, XUE Mintao, JIANG Feng, LI Suzhi(), ZHANG Bozhao, DING Jun, LI Xiaoping, MA En, DING Xiangdong, SUN Jun()
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article:
ZHANG Xu, TIAN Jin, XUE Mintao, JIANG Feng, LI Suzhi, ZHANG Bozhao, DING Jun, LI Xiaoping, MA En, DING Xiangdong, SUN Jun. Ta-W Refractory Alloys with High Strength at 2000oC. Acta Metall Sin, 2022, 58(10): 1253-1260.
Advanced structural alloys that can withstand exceedingly high operating temperatures are in high demand. The high-temperature strength of these alloys needs to be above a certain level, above and beyond what can be offered by currently available alloys, while still having adequate room-temperature ductility to allow sufficient forming ability. In this study, Ta-W refractory alloys with W content ranging from 10% to 50% (atomic fraction) are prepared using arc-melting. All the Ta-W alloys are single-phase solid solutions with a bcc structure, and their average grain size decreases with increasing W content. Uniaxial compression tests are performed at both 25°C and 2000°C for the Ta-W alloys. The results suggest that the compressive yield strength of the Ta-W alloys increases with the W concentration at both temperatures, and they exhibit excellent compressive strength at high temperatures. In particular, the strength of the Ta-20%W alloy could reach as high as 236 MPa at 2000°C, a benchmark never reported for known alloys, while offering room-temperature shaping capability with a compressive strain over 40% at 25°C. A recent model based on screw dislocation activities in bcc concentrated solutions yields a reasonable prediction for the yield strength measured at both temperatures. Such Ta-W refractory alloys have the potential for load-bearing applications at extremely high temperatures.
Fig.1 Schematic of dimension of the Ta-W specimen for uniaxial compression tests (unit: mm)
Fig.2 Ingots of Ta-W alloys prepared using arc-melting (a) Ta-10%W (b) Ta-20%W (c) Ta-30%W (d) Ta-40%W (e) Ta-50%W
Fig.3 XRD spectra of the Ta-W alloys (a) and the variation of lattice constant as a function of W concentration (b) (Inset in Fig.3a shows the locally enlarged view)
Fig.4 SEM images and EDS mapping of Ta-10%W (a), Ta-20%W (b), Ta-30%W (c), Ta-40%W (d), and Ta-50%W (e) alloys
Fig.5 Compressive engineering stress-strain curves of Ta-W alloys at 25oC (a) and 2000oC (b), temper-ature dependence of compressive yield strength of Ta-W alloys in this work, Ta-W alloys[23], typical refractory high-entropy alloys[9,24-29] (The tensile yield strength for commercial Ni-based superalloys[30] are shown for reference) (c)
Alloy
25oC
2000oC
Experimental
Predicted
Experimental
Predicted
Ta-10%W
599
457
162
98
Ta-20%W
836
703
236
150
Ta-30%W
944
817
330
187
Ta-40%W
1010
905
385
224
Ta-50%W
1030
870
369
218
Table 1 Experimental and predicted compressive yield strengths of Ta-W alloys at 25 and 2000oC
Fig.6 Comparisons of the predicted and experimental values for compressive yield strength at 25 and 2000oC in Ta-W alloys
1
Liang X B, Wan Y X, Mo J Y, et al. Research progress in novel high-temperature high entropy alloys [J]. Sci. Technol. Rev., 2021, 39(11): 96
Van Wie D M, D'Alessio S M, White M E. Hypersonic airbreathing propulsion [J]. Johns Hopkins APL Tech. Dig., 2005, 26: 430
3
Zhang J, Wang L, Wang D, et al. Recent progress in research and development of Nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace [J]. Rare Met. Mater. Eng., 2011, 40(10): 1871
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
6
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
7
Liu Z Q, Qiao J W. Research progress of refractory high-entropy alloys [J]. Mater. China, 2019, 38: 767
刘张全, 乔珺威. 难熔高熵合金的研究进展 [J]. 中国材料进展, 2019, 38: 767
8
Zhao H C, Liang X B, Qiao Y L, et al. Research progress of low-density and high-entropy alloys [J]. J. Aeronaut. Mater., 2019, 39(5): 61
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
10
Couzinié J P, Senkov O N, Miracle D B, et al. Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys [J]. Data Brief, 2018, 21: 1622
doi: 10.1016/j.dib.2018.10.071
pmid: 30505892
11
Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of Ti x NbMoTaW refractory high-entropy alloys [J]. Mater. Sci. Eng., 2018, A712: 380
12
Li T X, Jiao W N, Miao J W, et al. A novel ZrNbMoTaW refractory high-entropy alloy with in-situ forming heterogeneous structure [J]. Mater. Sci. Eng., 2021, A827: 142061
13
Wang Z Q, Wu H H, Wu Y, et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering [J]. Mater. Today, 2022, 54: 83
doi: 10.1016/j.mattod.2022.02.006
14
Wei Q Q, Xu X D, Shen Q, et al. Metal-carbide eutectics with multiprincipal elements make superrefractory alloys [J]. Sci. Adv., 2022, 8: eabo2068
doi: 10.1126/sciadv.abo2068
15
Zhou L. Numerical simulation and experimental investigation of micro plasma arc welding of tantalum tungsten alloy thin sheets [D]. Wuhan: Wuhan University of Technology, 2017
周 浪. 钽钨合金薄板微束等离子弧焊数值模拟与实验研究 [D]. 武汉: 武汉理工大学, 2017
16
Wang H, Zhang X M, Li L P, et al. Industry applications of tantalum and tantalum alloy [J]. Equip. Manuf. Technol., 2013, (8): 115
Buckman Jr R W. New applications for tantalum and tantalum alloys [J]. JOM, 2000, 52(3): 40
19
Huang W J, Qiao J W, Chen S H, et al. Preparation, structures and properties of tungsten-containing refractory high entropy alloys [J]. Acta Phys. Sin., 2021, 70(10): 235
Li Q Y, Zhang H, Li D C, et al. Manufacture of WNbMoTa high performance high-entropy alloy by laser additive manufacturing [J]. J. Mech. Eng., 2019, 55(15): 10
doi: 10.3901/JME.2019.15.010
Xu Q, Wang Q, Li J, et al. Effects of Boron on the microstructure and mechanical properties of NbMoTiVSi0.2 refractory high entropy alloys [J]. Spec. Cast. Nonferrous Alloys, 2022, 42(3): 292
Cui Z D, Liu H S. Metal Materials and Heat Treatment [M]. Changsha: Central South University Press, 2010: 95
崔振铎, 刘华山. 金属材料及热处理 [M]. 长沙: 中南大学出版社, 2010: 95
23
Lassila D H, Goldberg A, Becker R. The effect of grain boundaries on the athermal stress of tantalum and tantalum-tungsten alloys [J]. Metall. Mater. Trans., 2002, 33A: 3457
24
Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys [J]. Acta Mater., 2014, 68: 214
doi: 10.1016/j.actamat.2014.01.029
25
Senkov O N, Woodward C F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. Mater. Sci. Eng., 2011, A529: 311
26
Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system [J]. Mater. Sci. Eng., 2013, A565: 51
27
Guo N N, Wang L, Luo L S, et al. Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy [J]. Mater. Des., 2015, 81: 87
doi: 10.1016/j.matdes.2015.05.019
28
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. J. Mater. Sci., 2012, 47: 4062
doi: 10.1007/s10853-012-6260-2
29
Senkov O N, Isheim D, Seidman D N, et al. Development of a refractory high entropy superalloy [J]. Entropy, 2016, 18: 102
doi: 10.3390/e18030102
30
Praveen S, Kim H S. High-entropy alloys: Potential candidates for high-temperature applications—An overview [J]. Adv. Eng. Mater., 2018, 20: 1700645
doi: 10.1002/adem.201700645
31
Asghari-rad P, Sathiyamoorthi P, Bae J W, et al. Effect of grain size on the tensile behavior of V10Cr15Mn5Fe35Co10Ni25 high entropy alloy [J]. Mater. Sci. Eng., 2019, A744: 610
32
Park C H, Hong S C, Lee C S. A unified constitutive model for quasi-static flow responses of pure Ta and Ta-W alloys [J]. Mater. Sci. Eng., 2011, A528: 1154
33
Yin B L, Maresca F, Curtin W A. Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys [J]. Acta Mater., 2020, 188: 486
doi: 10.1016/j.actamat.2020.01.062
34
Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K [J]. Acta Mater., 2020, 182: 235
doi: 10.1016/j.actamat.2019.10.015
35
Varvenne C, Luque A, Curtin W A. Theory of strengthening in fcc high entropy alloys [J]. Acta Mater., 2016, 118: 164
doi: 10.1016/j.actamat.2016.07.040
36
Yin B L, Curtin W A. First-principles-based prediction of yield strength in the RhIrPdPtNiCu high-entropy alloy [J]. npj Comput. Mater., 2019, 5: 14
doi: 10.1038/s41524-019-0151-x
37
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
doi: 10.1073/pnas.1919136117