EFFECT OF PORE SIZES OF Au ANTIDOT ARRAYS ON PHOTOCATALYSIS PERFORMANCE OF Au/TiO2 COMPOSITE FILMS
QI Hongfei1(), LIU Dabo1, TENG Lejin1, WANG Tianmin2, LUO Fei1, TIAN Ye1
1 Department of Steel and Rare-Noble Metals, AVIC Beijing Institute of Aeronautical Materials, Beijing 100095 2 Center of Condensed Matter and Material Physics, Beihang University, Beijing 100191
Cite this article:
QI Hongfei, LIU Dabo, TENG Lejin, WANG Tianmin, LUO Fei, TIAN Ye. EFFECT OF PORE SIZES OF Au ANTIDOT ARRAYS ON PHOTOCATALYSIS PERFORMANCE OF Au/TiO2 COMPOSITE FILMS. Acta Metall Sin, 2014, 50(10): 1163-1169.
Au/TiO2 composite films with different pore sizes of antidot arrays are prepared by inversion replication of colloidal crystal templates. The microstructure and the photocatalysis performance of all samples are characterized by using SEM, AFM, XRD, UV-Vis and four-point probe. Relations between the coverage of antidot arrays on the surface of TiO2 films and the diameters of template microspheres are discussed through calculation on geometric model of colloidal crystal templates and antidot arrays. The results show that the pore size of Au antidot arrays significantly influences the photocatalysis performance of the composite films. With the pore size increasing, the conducting ability and the charge carriers transport efficiency enhances. This is responsible for the improvement of photocatalysis performance. At the same time, the recombination probability of photoinduced electrons and holes increases during the charge carrier migration with the pore size decreasing, which result in the decrease of the photocatalysis performance. The photocatalysis performance increases rapidly and then decreases gradually with the pore size increasing, which is the result of the aforementioned two aspects of factors. The photocatalysis performance of the composite films reaches the maximum value when the pore size of Au antidot arrays is 3.3 μm.
Fig.2 SEM images of TiO2 film (a) and monolayer colloid crystals (b)
Fig.3 XRD pattern of TiO2 films
Fig.4 SEM images of Au antidot arrays in pore sizes of 1.3 μm (a), 2.3 μm (b), 3.3 μm (c), 4.2 μm (d) and 5.6 μm (e)
Fig.5 Ultraviolet-visible absorption spectra of initial methylene blue solution (a) and methylene blue solution degraded by photocatalysts for 1 h (b)
Fig.6 Relationships between degradation rate and pore size of antidot arrays
Fig.7 Geometry structure of colloidal crystal templates (a) and antidot arrays (b) (d1—diameter of PS microsphere, d2—diameter of antidot arrays, r—microgrid spacing of antidot arrays)
Fig.8 Sheet resistance of Au/ TiO2 with different pore sizes
Fig.9 AFM image of Au/ TiO2 with pore size of 2.3 μm (a) and height of antidot arrays along the line in Fig.9a (b)
Fig.10 Relationships between height of antidot arrays and diameter of PS particles
Fig.11 Schematic diagram of charge carrier migration in the pore of antidot arrays
[1]
Chen X, Liu L, Yu P Y, Mao S S. Science, 2011; 331: 746
[2]
Wang H Q, Shen H, Ba D C, Wang B W, Wen L S, Chen D. Acta Metall Sin (Engl Lett), 2005; 18: 194
[3]
Niibe M, Sano K, Kotaka T, Kawakami R, TominAua K, Nakano Y. J Appl Phys, 2013; 113: 126101
[4]
Li Z G, Miyake S. Acta Metall Sin, 2010; 46: 13
(李铸国, 三宅正司. 金属学报, 2010; 46: 13)
[5]
Zhang M, Lin G Q, Dong C, Wen L S. Acta Metall Sin, 2007; 43: 509
(张 敏, 林国强, 董 闯, 闻立时. 金属学报, 2007; 43: 509)
[6]
Wang T M, Wang Y. Mater China, 2010; 29: 60
(王天民, 王 莹. 中国材料进展, 2010; 29: 60)
[7]
Zhang Y G, Wang Y X. J Appl Phys, 2011; 110: 033519
[8]
Zeng Y, Liu J T, Qian W J, Gao J H. Acta Metall Sin (Engl Lett), 2005; 18: 363
[9]
Wang Y, Zhao D, Ji H, Liu G, Chen C, Ma W, Zhu H, Zhao J. J Phys Chem, 2010; 114C: 17728
[10]
Pandikumar A, Murugesan S, Ramaraj R. Appl Mater Interf, 2010; 2: 1912
[11]
Zhang Y, Wang Q, Xu J, Ma S. Appl Surf Sci, 2012; 258: 10104
[12]
Chiarello G L, Ferri D, Selli E. J Catal , 2011; 280: 168
[13]
Lucjan C, Maudalena J, Adam S, Zofia P, Aunieszka W, Stefan W, Marek M. Appl Catal, 2013; 130B: 152
[14]
Stepanov A L. Rev Adv Mater Sci, 2012; 30: 150
[15]
Adochite R C, Munteanu D, Torrell M, Cunha L, Alves E, Barradas N P, Cavaleiro A, Riviere J P, Le Bourhis E, Eyidi D, Vaz F. Appl Surf Sci, 2012; 258: 4028
[16]
Chakravadhanula V S K, Hrkac T, Zaporojtchenko V, Podschun R, Kotnur V G, Kulkarni A, Strunskus T, Kienle L, Faupel F. J Nanosci Nanotechno, 2011; 11: 4893
[17]
Wang C, Yin L, Zhang L, Liu N, Lun N, Qi Y. Appl Mater Interf, 2010; 2: 3373
[18]
Zhang X, Meng H, Sun T, Zhou C B. Acta Metall Sin, 2008; 44: 1394
(张 霞, 孟 皓, 孙 挺, 周春彬. 金属学报, 2008; 44: 1394)
[19]
Lazau C, Ratiu C, Orha C, Pode R, Manea F. Mater Res Bull, 2011; 46: 1916
[20]
Qi H F, Hao W C, Xu H Z, Zhang J Y, Wang T M. Colloid Polym Sci, 2009; 287: 243
[21]
Minchitha K U, Geetha Balakrishna R. Mater Chem Phys, 2012; 136: 720