Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (10): 1279-1284    DOI: 10.11900/0412.1961.2014.00160
Current Issue | Archive | Adv Search |
HIGH POWER PULSED MAGNETRON SPUTTERING DISCHARGE BEHAVIOR OF VARIOUS TARGET MATERIALS
WU Zhongzhensup1,2(), TIAN Xiubosup2, PAN Fengsup1, FU K Y Rsup3, CHU K Psup3
1 School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055
2 State Key Laboratory of Advanced Welding Production and Technology, Harbin Institute of Technology,
Harbin 150001
3 Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Cite this article: 

WU Zhongzhen, TIAN Xiubo, PAN Feng, FU K Y R, CHU K P. HIGH POWER PULSED MAGNETRON SPUTTERING DISCHARGE BEHAVIOR OF VARIOUS TARGET MATERIALS. Acta Metall Sin, 2014, 50(10): 1279-1284.

Download:  HTML  PDF(1529KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Great interesting is induced by high power pulsed magnetron sputtering (HPPMS) for its high ionization of the sputtered materials, while the complex discharge puts of its applications in industry. The HPPMS discharge behaviors of various materials with different sputtering yields (Cu, Cr, Mo, Ti, V and C) were studied. The discharges of all the materials show a phasic discharge characteristic of five continuous stages. However, the target voltage of the same discharge stage of the material increases firstly, and decreases then with the increase of the sputtering yields, exhibiting a missing of certain discharge stage. The statistics of the mean values, peaks and platforms of the target currents show that self-sputtering and stable platform happen easily to the materials with high sputtering yields which is suitable for the thin films deposition by HPPMS, whereas gas discharge is dominated in the discharge of the materials with low sputtering yields, which is difficult in the using of HPPMS. Additional, the target current is mainly contributed to the platform (metal discharge) to the materials with high sputtering yields and the peaks (gas discharge) to the materials with low sputtering yields, respectively.

Key words:  high power pulsed magnetron sputtering      sputtering yield      target current      target voltage     
Received:  26 June 2014     
ZTFLH:  TG174.444  
Fund: Supported by National Natural Science Foundation of China (Nos.51301004 and U1330110)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00160     OR     https://www.ams.org.cn/EN/Y2014/V50/I10/1279

Fig.1  Schematic diagram of the high power pulsed magnetron sputtering (HPPMS) device structure[21]
Incident ion energy / eV Cu Cr Mo V Ti C
600 2.30 1.30 0.93 0.70 0.58 0.35
1000 2.80 1.50 1.30 1.05 0.74 0.61
Table 1  Sputtering yield of the six target materials[22]
Fig.2  Evolution curves of discharge current waveforms with the increase of target voltage in HPPMS discharge with different target materials

(a) Cu (b) Cr (c) Mo (d) V (e) Ti (f) C

Fig.3  Evolutions of mean discharge currents with the increase of target voltage for different targets
Fig.4  Evolutions of discharge current peaks with the increase of target voltage for different
Fig.5  Evolutions of discharge current platforms with the increase of target voltage for different targets
[1] Wan L J, Chen B Q, Guo K X. Acta Metall Sin, 1988; 24: 443
(万立骏, 陈宝清, 郭可信. 金属学报, 1988; 24: 443)
[2] Li Z G, Yu H L, Wu Y X, Miyake S. Acta Metall Sin, 2006; 42: 993
(李铸国, 俞海良, 吴毅雄, 三宅正司. 金属学报, 2006; 42: 993)
[3] Kouznetsov V, Maca′k K, Schneider J M. Surf Coat Technol, 1999; 122: 290
[4] Bohlmark J, Gudmundsson J T, Alami J, Latteman M, Helmersson U. IEEE Trans Plasma Sci, 2005; 33: 346
[5] Bohlmark J, Lattemann M, Gudmundsson J T, Ehiasarian A P, Gonzalvo Y A, Brenning N, Helmersson U. Thin Solid Films, 2006; 515: 1522
[6] Horwat D, Anders A. J Phys, 2008; 41D: 135210
[7] Ehiasarian A P, Gonzalvo Y A, Whitmore T D. Plasma Processes Polym, 2007; 4: S309
[8] Huang M D, Lin G Q, Dong C. Acta Metall Sin, 2003; 39: 510
(黄美东, 林国强, 董 闯. 金属学报, 2003; 39: 510)
[9] Xiao J Q, Lang W C, Zhao Y H, Gong J, Sun C, Wen L S. Acta Metall Sin, 2011; 47: 566
(肖金泉, 郎文昌, 赵彦辉, 宫 骏, 孙 超, 闻立时. 金属学报, 2011; 47: 566
[10] Duan W Z. Master Thesis, Harbin Institute of Technology, 2010
(段伟赞. 哈尔滨工业大学硕士学位论文, 2010)
[11] Gudmundsson J T, Brenning N, Lundin D, Helmersson U. J Vac Sci Technol, 2012; 30A: 030801
[12] Christie D J. Czech J Phys, 2006; 56: B93
[13] Wu Z Z, Tian X B, Cheng S D, Gong C Z, Yang S Q. Acta Metall Sin, 2012; 48: 283
(吴忠振, 田修波, 程思达, 巩春志, 杨士勤. 金属学报, 2012; 48: 283)
[14] Daniel L, Nils B, Daniel J, Larsson P, Wallin E, Lattemann M, Raadu M A, Helmersson U. Plasma Sources Sci Technol, 2009; 18: 045008
[15] Magnus F, Sveinsson O B, Olafsson S, Gudmundsson J T. J Appl Phys, 2011; 110: 083306
[16] Yushkov G Y, Anders A. IEEE Trans Plasma Sci, 2010; 38: 3028
[17] Nakano T, Murata C, Baba S. Vacuum, 2010; 84: 1368
[18] Anders A. J Appl Phys, 2007; 102: 113303
[19] Capek J, Hala M, Zabeida O, Klemberg-Sapieha J E, Martinu L. J Appl Phys, 2012; 111: 023301
[20] Sigmund P. Phys Rev, 1969; 184: 383
[21] Wu Z Z, Tian X B, Duan W Z, Gong C Z, Yang S Q. Chin J Mater Res, 2010; 24: 561
(吴忠振, 田修波, 段伟赞, 巩春志, 杨士勤. 材料研究学报, 2010; 24: 561)
[22] Matsunami N, Yamamura Y, Yukikazu I, Noriaki I, Yukio K, Miyagawa S, Morita K, Shimizu R, Tawara H. At Data Nucl Data Tables, 1984; 31: 1
[23] Tian X B, Wu Z Z, Shi J W, Li X P, Gong C Z, Yang S Q. Chin Vac, 2010; 47(3): 44
(田修波, 吴忠振, 石经纬, 李希平, 巩春志, 杨士勤. 真空, 2010; 47(3): 44)
[24] Wu Z Z, Tian X B, Pan F,Fu R K Y, Chu P K. Acta Phys Sin, 2014; 17: 175201
(吴忠振, 田修波, 潘 锋, Ricky K.Y Fu, 朱剑豪. 物理学报, 2014; 17: 175201)
[25] Vozniy O V, Duday D, Lejars A, Wirtz T. Plasma Sources Sci Technol, 2011; 20: 06500801
[26] Vitelaru C, Lundin D, Stancu G D, Brenning N, Bretagne J, Minea T. Plasma Sources Sci Technol, 2012; 21: 025010
[27] Horwat D, Anders A. J Appl Phys, 2010; 108: 123306
[28] Anders A. Appl Phys Lett, 2008; 92: 201501
[29] Wiatrowski A, Posadowski W M, Radzimski Z J. J Phys: Conference Ser, 2008; 100: 062004
[30] Vetushka A, Ehiasarian A P. J Phys, 2008; 41D: 015204
[1] YU Lihua, DONG Hongzhi, XU Junhua. INFLUENCE OF C CONTENT ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND FRICTION AND WEAR PROPERTIES OF TiWCN COMPOSITE FILMS[J]. 金属学报, 2014, 50(11): 1350-1356.
[2] SHANG Hailong, LIU Wenqing, DONG Yujun, ZHANG Anming, MA Bingyang, LI Geyang. 3D ATOM PROBE CHARACTERIZATION OF MICRO-STRUCTURE OF TiBx/Al SUPERSATURATED SOLID SOLUTE COMPOSITE FILMS[J]. 金属学报, 2014, 50(4): 395-399.
[3] WU Zhongzhen TIAN Xiubo CHENG Sida GONG Chunzhi YANG Shiqin. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF DLC FILMS DOPED WITH HIGH CRYSTALLINITY CrN NANOPARTICLES[J]. 金属学报, 2012, 48(3): 283-288.
[4] ZHAO Shengsheng CHENG Yu CHANG Zhengkai WANG Tiegang SUN Chao. MODIFICATION OF STRESS DISTRIBUTION ALONG THE THICKNESS OF (Ti, Al)N COATINGS AND PREPARATION OF THE COATINGS WITH LARGE THICKNESS[J]. 金属学报, 2012, 48(3): 277-282.
[5] . [J]. 金属学报, 2003, 39(10): 1060-1064 .
[6] . [J]. 金属学报, 2003, 39(10): 1055-1059 .
[7] LI Mingsheng; WANG Fuhui; WANG Tiegang; GONG Jun; SUN Chao; WEN Lishi. Investigation of Phase Structure and Performance of (Ti, Al)N Films Deposited by Arc Ion Plating[J]. 金属学报, 2003, 39(1): 55-60 .
[8] . [J]. 金属学报, 2001, 37(1): 82-86 .
[9] . [J]. 金属学报, 2000, 36(11): 1187-1191 .
[10] . [J]. 金属学报, 2000, 36(11): 1205-1208 .
[11] . [J]. 金属学报, 2000, 36(10): 1094-1098 .
[12] . [J]. 金属学报, 2000, 36(10): 1099-1103 .
[13] . [J]. 金属学报, 2000, 36(8): 805-808 .
No Suggested Reading articles found!