Please wait a minute...
金属学报  2010, Vol. 46 Issue (1): 6-12    
  论文 本期目录 | 过刊浏览 |
Sn0.35-0.5xCo0.35-0.5xZnxC0.30复合材料的制备及电化学性能
杨绍斌, 沈丁, 李强
辽宁工程技术大学材料科学与工程学院; 阜新 123000
SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF Sn0.35-0.5xCo0.35-0.5xZnxC0.30 COMPOSITE
YANG Shaobin, SHEN Ding, LI Qiang
College of Materials Science and Engineering; Liaoning Technical University; Fuxin 123000
引用本文:

杨绍斌,沈丁,李强. Sn0.35-0.5xCo0.35-0.5xZnxC0.30复合材料的制备及电化学性能[J]. 金属学报, 2010, 46(1): 6-12.
YANG Shaobin, SHEN Ding, LI Qiang. SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF Sn0.35-0.5xCo0.35-0.5xZnxC0.30 COMPOSITE[J]. Acta Metall Sin, 2010, 46(1): 6-12.

全文: PDF(1218 KB)  
摘要: 

采用固相烧结和球磨相结合的方法制备了锂离子电池负极复合材料Sn0.35-0.5xCo0.35-0.5xZnxC0.30 (摩尔分数x分别为0, 0.05, 0.10, 0.15和0.20), 考察了Zn添加量对材料结构和电化学性能的影响. 烧结粉末样品的XRD分析表明, 随着Zn含量的增多, 在CoSn主相基础上, 先形成少量CoSn2相, 随后形成少量Co3Sn2, Zn和Sn相. 大部分 Zn原子固溶于CoSn相. 电性能分析表明, 随着Zn含量的增加, 首次放电容量和充放电效率都呈现先增加而后趋于稳定的趋势, 当x=0.15时, 首次放电容量和充放电效率都接近最大值, 分别为343 mA-h/g和73.8%; 经过 25 cyc充放电后放电容量保持了首次放电容量的87.6%. 这表明Zn原子固溶引起的晶格畸变和多种相生成导致相界数量的增多, 加快了Li+动力学扩散速度, 从而显著改善了电化学性能. 选择烧结粉末样品Sn0.275Co0.275Zn0.15C0.30进行球磨, 晶粒和颗粒的细化使样品的放电容量显著提升, 但对首次放电效率和循环性能改善不明显.

关键词 锂离子电池Sn-Co-CZn添加固相烧结球磨    
Abstract

A series of Sn0.35-0.5xCo0.35-0.5xZnxC0.30(x=0, 0.05, 0.10, 0.15, 0.20) composites as novel anode materials used in lithium-ion batteries were synthesized from Sn, Co, Zn element powders and carbon black using solid-state sintering and ball milling, and the influences of Zn content on the structures and the electrochemical properties of those materials were analyzed. XRD data of the sintered powders illustrated that minor amount phase CoSn2 is formed firstly in the CoSn matrix phase with increasing content of Zn. Then, a little amounts of Co3Sn2, Zn and Sn are also precipitated. Most of Zn atoms dissolve into CoSn phase and lead to lattice distortion of the matrix. As a result, the lattice parameters a, c and unit cell volume V of CoSn phase are all reduced first and then enlarged with increasing content of Zn. Electrochemical analysis showed that the initial discharge capacity and initial charge-discharge efficiency are both improved first and then tended to stablility with increasing content of Zn, and as x=0.15, reach the maximums, 343 mA-h/g and 73.8%, respectively. The reversible capacity remains above 87.6% of the initial discharge capacity after 25 charge-discharge cycles. The lattice distortion caused by Zn solution and the formation of multiphase are beneficial for accelerating the diffusion of Li+ and enhancing the stability of structure, so the electrochemical properties are improved significantly. The sintered powder Sn0.275Co0.275Zn0.15C0.30 was milled for different times (t=10, 20 and 30 h), and it is shown that the refinements of grains and particles improved discharge capacity obviously, however, charge-discharge efficiency and cycle performance changed little.

Key wordslithium-ion battery    Sn-Co-C    Zn addition    solid-state sintering    ball milling
收稿日期: 2009-07-09     
ZTFLH:  TM911  
基金资助:

辽宁省自然科学基金资助项目

作者简介: 杨绍斌, 男, 1963年生, 教授

[1] Shen D, Yang S B, Zhang S K.  Chem Ind Eng Prog, 2007; 27: 1894



(沈丁, 杨绍斌, 张淑凯. 化工进展, 2007; 27: 1894)



[2] Wolfenstine J, Campos S.  Mater Lett, 2002; 57: 24



[3] Wang G, Lu Z W, Gao X P, Liu X J, Wang J Q.  J Power Sources, 2009; 189: 655



[4] Wang G X, Ahn J H, Lindsay M J, Sun L, Bradhurst D H. Dou S X, Liu H K.  J Power Sources, 2001; 97--98: 211



[5] Liu Y, Xie J Y, Takeda, Yang J.  J Appl Electrochem, 2002; 32: 687



[6] Lee K T, Jung Y S, Oh S M.  J Am Chem Soc, 2003; 125: 5652



[7] Kumar T P, Ramesh R, Lin Y Y, Fey G T K.  Electrochem Commun, 2004; 6: 520



[8] Noh M J, Kwon Y J, Lee H J, Cho J P, Kim Y J, Kim M G.  Chem Mater, 2005; 17: 1926



[9] Wu F, Li Y H, Wu C, Mu D B, Bai Y, Wu S X.  Chin J Inorg Chem, 2009; 25: 7



(吴锋, 李艳红, 吴川, 穆道斌, 白莹, 吴生先. 无机化学学报, 2009; 25: 7)



[10] Guo K M, Shi P F, Cheng X Q.  New Chem Mater, 2008; 36(9): 90



(郭昆明, 史鹏飞, 程新群. 化工新型材料, 2008; 36(9): 90)



[11] Wang H Q, Yan Z X, Li Q Y, Zhang A N, Dai Q F.  New Chem Mater, 2007; 35(8): 8



(王红强, 颜志雄, 李庆余, 张安娜, 代启发. 化工新型材料, 2007; 35(8): 8)



[12] Zheng M S, Song H H, Zhang S Y, Chen X H.  Chin J Power Sources, 2004; 28: 334



(郑妙生, 宋怀河, 章颂云, 陈晓红. 电源技术, 2004; 28: 334)



[13] Sony Corporation.  CN Pat, 200510107034.1, 2006



(索尼公司. 中国专利, 200510107034.1, 2006)



[14] Guilmen P, Guyot P, Marchai G.  Phys Lett, 1985; 109A: 174



[15] Todd A D W, Mar R E, Dahn J R.  J Electrochem Soc, 2006; 153A: 1998



[16] Todd A D W, Mar R E, Dahn J R.  J Electrochem Soc, 2007; 154A: 597



[17] Dahn J R, Mar R E. Abouzlid A.  J Electrochem Soc, 2006; 153A: 361



[18] Shen D.  Master Dissertation, Liaoning Technical University, Fuxin, 2009



(沈丁. 辽宁工程技术大学硕士学位论文, 阜新, 2009)



[19] Matsushita Electric Industrial Co, Ltd.,  US Pat, 20040062990, 2004



[20] Dean J A.  Lange's Handbook of Chemistry. 12th ed, New York: McGraw--Hill, 1992: 2--2



[21] Pan J S, Tong J M, Tian M B.  Fundamentals of Materials Science and Engineering.



Beijing: Tsinghua University Press, 2007: 167



(潘金生, 仝健民, 田民波. 材料科学与基础. 北京: 清华大学出版社, 2007: 167)



[22] Hassoun J, Mulas G, Panero S, Scrosati B.  Electrochem Commun, 2007; 9: 2075



[23] Ionica--Bousquet C M, lippens P E, Aldon L, Olivier--Fourcade J, Jumas J C.  Chem Mater, 2006; 18: 6442



[24] Li H, Wang Z X, Huang X J, Chen L Q.  Physics, 2008; 6: 416



(李泓, 王兆翔, 黄学杰, 陈立泉. 物理, 2008; 6: 416)



[25] Wang Z, Tian W H , Li X G.  Acta Phys--Chim Sin, 2006; 22: 752



(王忠, 田文怀, 李星国. 物理化学学报, 2006; 22: 752)



[26] Guo H, Zhao H L, Jia X D, Xue L, Qiu W H.  Electrochim Acta, 2007; 52: 4853



[27] Jin Y P, Guo B, Wang E D.  Chin J Nonferrous Met, 2007; 17: 1490



(金永平, 郭斌, 王尔德. 中国有色金属学报, 2007; 17: 1490)



[28] Ren R, Wu Y C, Tang W M, Wang F T, Zhang Z Y.  Acta Phys Sin, 2008; 57: 5774



(任榕, 吴玉程, 汤文明, 汪峰涛, 郑治祥. 物理学报, 2008; 57: 5774)



[29] Yang J, Takeda Y, Imanishi N, Yamamoto O.  J Electrochem Soc, 1999; 146: 4009



[30] He Z Q, Li X H, Xiong L Z, Wu X M, Xiao Z B, Ma M Y.  Chin J Inorg Chem, 2005; 21: 170



(何则强, 李新海, 熊利芝, 吴显明, 肖卓炳, 麻明友. 无机化学学报, 2005; 21: 170)



[31] Zhang J J, Xia Y Y.  J Electrochem Soc, 2006; 153A: 1466

[1] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[2] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[3] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
[4] 朱敏, 鲁忠臣, 胡仁宗, 欧阳柳章. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用*[J]. 金属学报, 2016, 52(10): 1239-1248.
[5] 董旭光,付俊伟,杨院生. Al和Zn对铸造Mg-5Sn合金微观组织和力学性能的影响[J]. 金属学报, 2013, 49(5): 621-628.
[6] 许世娇 肖伯律 刘振宇 王文广 马宗义. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报, 2012, 48(7): 882-888.
[7] 刘荣明,岳明,张东涛,刘卫强,张久兴. SmCo5纳米颗粒和纳米薄片的制备、结构和磁性能[J]. 金属学报, 2012, 48(4): 475-479.
[8] 陈雪冰 邵忠宝 田彦文 . 高温球磨法制备发光材料BaMoO4:Eu3+[J]. 金属学报, 2010, 46(7): 862-866.
[9] 王晓丽 王国峰 张凯锋. 细晶Nb-16Si难熔合金的制备及其烧结-锻造短流程成形[J]. 金属学报, 2009, 45(9): 1030-1034.
[10] 王东 刘春明 王常珍. 高温质子导体Ba3Ca1.18Nb1.82O9-δ的制备和表征[J]. 金属学报, 2009, 45(3): 345-350.
[11] 张从阳 朱洁 张茂才. Mn3(Cu1-xGex)N的负热膨胀现象[J]. 金属学报, 2009, 45(1): 97-101.
[12] 李昌明; 黄启明; 张仁元; 李伟善; 赵灵智; 胡社军 . 电沉积制备的两种形貌Sn薄膜锂离子嵌入电极性能的比较[J]. 金属学报, 2007, 43(5): 515-520 .
[13] 赵世贤; 宋晓艳; 张久兴; 刘雪梅 . 原料粉末粒径匹配和结合状态对放电等离子技术制备超细硬质合金的影响[J]. 金属学报, 2007, 42(1): 0-112 .
[14] 任建国; 何向明; 姜长印; 万春荣 . 锂离子电池中纳米Cu--Sn合金负极材料的制备与性能研究[J]. 金属学报, 2006, 42(7): 727-732 .
[15] 杨滨; 程军胜; 樊建中; 田晓风; 陈汉宾; 张济山 . 低温球磨纳米晶Al-Zn-Mg-Cu合金组织的演变[J]. 金属学报, 2005, 41(11): 1195-1198 .