Please wait a minute...
金属学报  2006, Vol. 42 Issue (6): 629-634     
  论文 本期目录 | 过刊浏览 |
Ni76Cr19AlTi合金的热变形行为
滕浩; 尹志民; 朱远志; 周科朝; 李志友
中南大学材料科学与工程学院; 长沙 410083
HOT DEFORMATION BEHAVIOR OF Ni76Cr19AlTi SUPERALLOY
TENG Hao; YIN Zhimin; ZHU Yuanzhi; ZHOU Kechao; LI Zhiyoue
中南大学材料学院
引用本文:

滕浩; 尹志民; 朱远志; 周科朝; 李志友 . Ni76Cr19AlTi合金的热变形行为[J]. 金属学报, 2006, 42(6): 629-634 .
, , , , . HOT DEFORMATION BEHAVIOR OF Ni76Cr19AlTi SUPERALLOY[J]. Acta Metall Sin, 2006, 42(6): 629-634 .

全文: PDF(599 KB)  
摘要: 在Gleeble-1500热模拟机上对Ni76Cr19AlTi合金棒材进行 恒温和恒速压缩变形实验, 变形温度范围为800-1150 ℃, 应变速率范围 为10 -3 - 10 0 s -1. 结果表明, 实验合金在800和850 ℃ 热压缩时变形抗力较大, 容易发生开裂; 而在950-1150 ℃温度范围内热 变形由于发生动态再结晶, 合金变形抗力减小, 变形容易进行, 不会发生 开裂. 研究了合金在高温塑性变形过程中流变应力的变化规律, 确定了合 金在950-1150 ℃范围内的变形激活能Q为376.84 kJ/mol, 应力指数n 为4.15. 对合金的热压缩变形真应力-真应变曲线及变形机制的分析表明, 合理的变形条件为1050-1150 ℃及10 -1 - 10 0 s -1.
关键词 Ni76Cr19AlTi合金排气门热压缩变形    
Abstract:The hot deformation behavior of Ni76Cr19AlTi alloy was studied by compression test of cylindrical specimen at constant temperature and constant strain rate in a Gleeble-1500 system. The deformation temperature ranges from 800 ℃ to 1150 ℃, strain rate from 10 -3 s -1 to 1 s -1. The results show that Ni76Cr19AlTi alloy has a large deformed resistance and is easily fractured when deformed at 800℃ and 850℃. But when compressing at a temperature range of 950--1150℃, the resistance to deformation reduces and the alloy doesn't fracture because of dynamic crystallization. The measurement of the flow stress of the alloy in high temperature range of 950-1150 ℃ showed that the thermal deformation activation energy Q is 376.84 kJ/mol and stress exponent n is 4.15. By analyzing the true stress-strain curves for the alloy at hot compression and its deformation mechanism, the suitable deformation condition is at the temperature range from 1050 ℃ to 1150 ℃ with strain rate from 10 -1 s -1 to 10 0 s -1.
Key wordsNi76Cr19AlTi alloy    exhaust valve    hot compression deformation
收稿日期: 2005-08-15     
ZTFLH:  TG132.3  
[1] Srinivasan N, Prasad Y V R K. J Mater Process Technol, 1995; 51: 171
[2] Choudhury I A, El-Baradie M A. J Mater Process Tech- nol, 1998; 77: 278
[3] Gabrisch H, Mukherji D. Acta Mater, 2000; 48: 3157
[4] Tian B, Paris O, Zickler G A, Lind C, Wasle G, May R P. Scr Mater, 2002; 47: 25
[5] Nembach E, Pesicka J, Langmaack E. Mater Sci Eng, 2003; A362: 264
[6] Kim D K, Kim D Y, Ryu S H, Kim D J. J Mater Process Technol, 2001; 113: 148
[7] Hagiwara Y, Ishida M, Oka T, Watanabe R, Sato K. SAE Trans, 1991; 100: 484
[8] Takagi Y, Oka.be M, Likubo T. Stahl Eisen, 1990; (Spec): 138
[9] Zener C, Hollomon J H. J Appl Phys, 1944; 15(1): 22
[10] Sellars C M. Acta Metall, 1966; 14: 1136
[11] Sellars C M, Tegart W J. Int Metall Rev, 1972; 17: 1
[12] Bruni C, Forcellese A, Gabrielli F. J Mater Process Technol, 2002; 125-126: 242
[13] Prasad Y V R K, Sasidhara S, Sikka V K. Intermetallics, 2000; 8: 987
[14] Park N K, Kim I S, Na Y S, Yeom J T. J Mater Process Technol, 2001; 111: 98
[15] Zhang B J, Zhao G P, Jiao L Y, Xu G H, Qin H Y, Feng D. Acta Metall Sin, 2005; 41: 351 (张北江,赵光普,焦兰英,胥国华,秦鹤勇,冯 涤.金属学 报,2005;41:351)
[1] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[2] 孙朝阳 栾京东 刘赓 李瑞 张清东. AZ31镁合金热变形流动应力预测模型[J]. 金属学报, 2012, 48(7): 853-860.
[3] 童剑 黄华 袁广银 丁文江. 准晶增强的Mg-Zn-Al-(Y)合金热压缩变形行为[J]. 金属学报, 2011, 47(12): 1520-1526.
[4] 张红钢; 何勇; 刘雪峰; 谢建新 . NiTi形状记忆合金热压缩变形行为及本构关系[J]. 金属学报, 2007, 43(9): 930-936 .