Please wait a minute...
金属学报  2003, Vol. 39 Issue (2): 199-203     
  论文 本期目录 | 过刊浏览 |
超化学计量比Ti-Zr-V-Mn-Cr-Ni贮氢电极合金相结构及电化学性能研究
朱云峰; 李锐; 高明霞; 刘永锋; 潘洪革; 王启东
浙江大学材料科学与工程学系; 杭州 310027
Investigation of the Structure and Electrochemical Properties of Super-Stoichiometric Ti-Zr-V-Mn-Cr-Ni Hydrogen Storage Electrode Alloys
ZHU Yunfeng; LI Rui; GAO Mingxia; LIU Yongfeng; PAN Hongge; WANG Qidong
Department of Materials Science and Engineering; Zhejiang University; Hangzhou 310027
引用本文:

朱云峰; 李锐; 高明霞; 刘永锋; 潘洪革; 王启东 . 超化学计量比Ti-Zr-V-Mn-Cr-Ni贮氢电极合金相结构及电化学性能研究[J]. 金属学报, 2003, 39(2): 199-203 .
, , , , , . Investigation of the Structure and Electrochemical Properties of Super-Stoichiometric Ti-Zr-V-Mn-Cr-Ni Hydrogen Storage Electrode Alloys[J]. Acta Metall Sin, 2003, 39(2): 199-203 .

全文: PDF(219 KB)  
摘要: 研究了超化学计量比对钛基贮氢合金相结构及电化学性能的影响. XRD及EDS分析表明, 超化海陆空计量比贮氢合金(Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)x(x=2, 3, 4, 5, 6)均主要由六方结构的C14型Laves相和体心立方结构的钒基固溶体相构成. 随着x值的增大, 两相的晶胞参数及晶胞体积均减小. 电化学性能测试表明, 当x的值在2-5范围内时, 随着x值的增大, 合金的最大放电容量, 放电电位, 高倍率放电性能(HRD), 循环稳定性, 交换电流密度I0以及极限电流密度IL均提高. 但继续增大x值后, 除放电电位, 高位率放电性能和循环稳定性继续有所提高外, 最大放电容量, 交换电流密度I0以及极限电流IL均减小. 此外, 随着化学计量比的增大, 合金电极的活化渐趋困难.
关键词 钛基贮氢合金超化学计量比C14型Laves相    
Key words
收稿日期: 2002-02-01     
ZTFLH:  TG139  
[1] Willems J J G. Philips J Res Suppl, 1984; 39: 10
[2] Willems J J G, Buschow K H J. J Less-Common Mel,1987; 129: 13
[3] Sakai T, Miyamura H, Kuriyama N, Kato A, Oguro K,Ishikawa H. J Electrochem Soc, 1990; 137: 795
[4] Pan H G, Chen Y, Wang C S, Ma J X, Chen C P, WangQ D. Electrochim Acta, 1999; 44: 2263
[5] Wang C S, Lei Y Q, Wang Q D. Electrochim Acta, 1998;43: 3193
[6] Pan H G, Ma J X, Wang C S, Chen C P, Wang Q D.Electrochim Acta, 1999; 44: 3977
[7] Yu J S, Lee S M, Cho K, Lee J Y. J Electrochem Soc,2000; 147: 2013
[8] Kim D M, Lee S M, Jang K J, Lee J Y. J Alloys Compd,1998; 268: 241
[9] Iwakura C, Inoue H, Zhang S G, Nohara S, Yorimitsu K, Kuramoto N, Morikawa T. J Electrochem Soc, 1999; 146: 1659
[10] Tsukahara M, Kamiya T, Takahashi K, Kawabata A, Sakurai S, Shi J, Takeshita H T, Kuriyama N, Sakai T. J Electrochem Soc, 2000; 147: 2941
[11] Tsukahara M, Takahashi K, Isomura A, Sakai T. J AlloysCompd, 1999; 287: 215
[12] Lee S M, Kim S H, Jeon S W, Lee J Y.J ElectrochemSoc, 2000; 147: 4464
[13] Notten P H L, Hokkeling P. J Electrochem Soc, 1991; 138:1877
[14] Notten P H L, Einerhand R E F, Daams J L C. J AlloysCompd, 1994; 210: 221
[15] Fukumoto Y, Miyamoto M, Inoue H, Matsuoka M,Iwakura C. J Alloys Compd, 1996; 240: 76
[16] Kim D M, Lee S M, Jung J H, Jang K J, Lee J Y. JElectrochem Soc, 1998; 145: 93
[17] Vogt T, Reilly J J, Johnson J R, Adzic G D, Mc.Breen J.Electrochem Solid-State Lett, 1999; 2: 111
[18] Ye H, Zhang H, Cheng J X, Huang T S. J Alloys Compd,2000; 308: 163
[19] Tsukahara M, Takahashi K, Mishima T, Isomura A, SakaiT. J Alloys Compd, 1997; 253-254: 583
[20] Yu J S, Liu B H, Cho K, Lee J Y. J Alloys Compd, 1998;278: 283
[21] Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H, Iwasaki T. J Alloys Compd, 1993; 202: 183
[1] 陈妮; 李锐; 朱云峰; 刘永锋; 潘洪革 . Ti--V基多相贮氢电极合金的电化学吸放氢机理研究[J]. 金属学报, 2004, 40(11): 1200-1204 .