Please wait a minute...
金属学报  2005, Vol. 41 Issue (9): 989-993     
  论文 本期目录 | 过刊浏览 |
Fe3Al合金与Q235钢扩散焊界面的析出相
王 娟 李亚江 马海军
山东大学材料液态结构及其遗传性教育部重点实验室; 济南 250061
PRECIPITATE AT DIFFUSION-BONDED INTERFACE BETWEEN Fe3Al ALLOY AND STEEL Q235
WANG Juan; LI Yajiang; MA Haijun
Key Laboratory of Liquid Structure and Heredity of Materials; Ministry of Education;Shandong University; Jinan 250061
引用本文:

王娟; 李亚江; 马海军 . Fe3Al合金与Q235钢扩散焊界面的析出相[J]. 金属学报, 2005, 41(9): 989-993 .
, , . PRECIPITATE AT DIFFUSION-BONDED INTERFACE BETWEEN Fe3Al ALLOY AND STEEL Q235[J]. Acta Metall Sin, 2005, 41(9): 989-993 .

全文: PDF(286 KB)  
摘要: 采用扫描电镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)和电子探针(EPMA)对Fe3Al/Q235扩散焊界面的析出相形貌进行观察和成分测定,研究微观析出相的形成以及工艺参数(T, t , p)的影响. 结果表明, Fe3Al/Q235扩散焊界面靠近Fe3Al一侧形成FeAl(Cr)析出相,是引起扩散焊接头脆性断裂的关键. 扩散焊温度T、保温时间t与析出相区宽度y符合抛物线规律: y2=3.5 (t-t0)exp[-5.6×104/(RT)]. 在降低加热温度和保温时间的条件下,增加焊接压力可促进Fe3Al/Q235界面原子的扩散,避免脆性析出相的形成,保证Fe3Al/Q235扩散焊接头的性能.
关键词 Fe3Al合金Q235钢扩散焊     
Abstract:Morphology, structure and chemical composition of the precipitate at Fe3Al/Q235 diffusion-bonded interface were studied by means of scanning electron microscope (SEM), energy dispersive spectrum (EDS), X-ray diffractometer (XRD) and electron probe micro-analysis (EPMA). The formation of the precipitate and the effect of technological parameters on the precipitate were also investigated. The results indicate that FeAl(Cr) was formed in the Fe3Al side of the Fe3Al/Q235 diffusion-bonded interface, which is the key to cause brittle fracture of the Fe3Al/Q235 bonded joint. The relation between the formation and growth of FeAl(Cr) and bonding parameters obeys the parabolic law, y2=3.5 (t-t0)exp[-5.6 ×10 4/(RT)]. So in order to avoid the formation of the precipitate and to ensure the performance of the Fe3Al/Q235 bonded joint, it is necessary to increase pressure for accelerating the atom diffusion at the interface with lower heating temperature and shorter bonding time.
Key wordsFe3Al alloy    steel Q235    diffusion bonding
收稿日期: 2005-01-18     
ZTFLH:  TG401  
[1] Fair G H,Wood J V. J Mater Sci, 1994; 29: 1935
[2] Ma G, Xia Y M. Acta Metall Sin, 2002; 38: 914 (马钢,夏源明.金属学报,2002;38:914)
[3] Mckamey C G, Maziasz P J, Jones J W. J Mater Res, 1992; 7: 2089
[4] Sun Z Q, Gao D C, Yang W Y, Huang X X, Huang J H. Chin J Mater Res, 2001; 15: 69 (孙祖庆,高德春,杨王玥,黄晓旭,黄继华.材料研究学报, 2001;15:69)
[5] David S A, Zacharia T.Weld J, 1993; 72: 201
[6] Gao D C, Yang W Y, Dong M, Huang J H, Sun Z Q.Acta Metall Sin. 2000; 36: 87 (高德春,杨王玥,董敏,黄继华,孙祖庆.金属学报,2000; 36:87)
[7] Ni J S, Zhu J H, Wan X J, Xie B L.Welding,1995; (1): 5 (倪建森,朱家红,万晓军,谢蓓玲.焊接, 1995;(1):5)
[8] Li Y J, Wang J, Yin Y S, Wu H Q, Feng J C.Trans Chin Weld Inst, 2002; 23: 25 (李亚江,王娟,尹衍升,吴会强,冯吉才.焊接学报,2002; 23:25)
[9] Li Y J, Wu H Q, Wang J. Mater Sci Technol, 2003; 19: 227
[10] Li D Q, Lin D L. J Mater Eng, 1997; (3): 20 (郦定强,林栋梁.材料工程, 1997;(3):20)
[11] Shi Y X, Zhang Y W. Trans Chin Weld Inst, 1985; 6: 177 (施雨湘,张有为.焊接学报, 1985;6:177)
[1] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[2] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[3] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[4] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[5] 汪川; 王振尧; 柯伟 . Q235碳钢在SO2气体中的初期腐蚀行为[J]. 金属学报, 2008, 44(6): 729-734 .
[6] 李亚江; 王娟; 尹衍升; 马海军 . Fe3Al/18-8不锈钢扩散焊界面附近的元素扩散[J]. 金属学报, 2005, 41(2): 150-156 .
[7] 张贵锋; 张建勋; 裴怡; 牛靖 . 相变--扩散钎焊新工艺接头性能及主组元扩散行为[J]. 金属学报, 2004, 40(6): 653-.
[8] 张贵锋; 张建勋; 张华; 裴怡; 王士元 . 预置中间层的相变超塑性焊接新工艺及其接头组织[J]. 金属学报, 2003, 39(6): 655-660 .
[9] 张新平; 魏巍; 权高峰 . SiCp增强Al基复合材料的真空扩散焊接[J]. 金属学报, 1999, 35(2): 198-202 .
[10] 李延祥;文九巴;祝要民;黄金亮. Ni-Fe-Cr-B-Si涂层超塑扩散焊接的强化效应及耐磨性[J]. 金属学报, 1996, 32(5): 538-543.
[11] 翟阳;任家烈;庄丽君. 用非晶态合金作中间层对Si_3N_4陶瓷进行扩散焊连接[J]. 金属学报, 1994, 30(20): 361-365.
[12] 黄岩;马龙翔. 超塑性LC4Al合金的扩散焊接[J]. 金属学报, 1992, 28(9): 81-86.
[13] 黄岩;崔建忠;马龙翔. 金属扩散焊接的原子反应模型[J]. 金属学报, 1992, 28(1): 90-94.