Please wait a minute...
金属学报  2011, Vol. 47 Issue (4): 462-468    DOI: 10.3724/SP.J.1037.2010.00534
  论文 本期目录 | 过刊浏览 |
钛合金片层组织两相区变形时的流动软化机理分析
宋鸿武1), 张士宏1), 程明1), 李臻熙2), 曹春晓2), 包春玲3)
1) 中国科学院金属研究所, 沈阳 110016
2) 北京航空材料研究院, 北京 100095
3) 沈阳铸造研究所钛合金部, 沈阳 110023
FLOW SOFTENING MECHANSIM OF A Ti ALLOY WITH LAMELLAR STRUCTURE DURING SUBTRANSUS DEFORMATION
SONG Hongwu1), ZHANG Shihong1), CHENG Ming1), LI Zhenxi2), CAO Chunxiao2), BAO Chunling3)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Beijing Institute of Aeronautical Materials, Beijing 100095
3) Titanium Alloy Division, Shenyang Research Institute of Foundry, Shenyang 110023
引用本文:

宋鸿武 张士宏 程明 李臻熙 曹春晓 包春玲. 钛合金片层组织两相区变形时的流动软化机理分析[J]. 金属学报, 2011, 47(4): 462-468.
, , , , , . FLOW SOFTENING MECHANSIM OF A Ti ALLOY WITH LAMELLAR STRUCTURE DURING SUBTRANSUS DEFORMATION[J]. Acta Metall Sin, 2011, 47(4): 462-468.

全文: PDF(976 KB)  
摘要: 钛合金片层组织在两相区变形时流动应力随应变的增加普遍表现为快速硬化和持续软化的特征. 为了研究该流动软化的机理, 采用等温热压缩实验研究了TC11合金片层组织在温度890-995 ℃和应变速率0.01-10 s-1范围内的热变形行为. 理论计算表明α/β片层界面(α片层内孪晶界)产生的 Hall-Petch强化效应远大于片层束集边界. TC11合金片层组织高温变形的流动软化机理可归结为硬滑移模式向软滑移模式转变导致Hall-Petch强化效应的减弱.
关键词 TC11钛合金 两相区变形流动软化Hall-Petch效应    
Abstract:The flow stress has a considerable flow softening after a peak strain hardening at very low strains for Ti alloys with lamellar structure during subtransus deformation. In order to study the mechanism of such flow softening behavior, the deformation behavior of TC11 Ti alloy with a lamellar structure was studied using isothermal hot compression tests under a temperature range of 890-995 ℃ and a strain rate range of 0.01-10 s-1. Theoretical calculation shows the Hall-Petch strengthening effects induced by α/β  interface as well as the twin boundary in α lamellar are far more significant than that of the colony boundary. The flow softening can be related to reduction of Hall-Petch strengthening effects due to transfer from the hard slip mode to the soft one.
Key wordsTC11 Ti alloy    subtransus deformation    flow softening    Hall-Petch effect
收稿日期: 2010-10-11     
基金资助:

国家重点基础研究发展计划资助项目51319

作者简介: 宋鸿武, 男, 1981年生, 博士
[1] Shechtman D, Eylon D. Metall Trans, 1978; 9A: 1018

[2] Semiatin S L, Lahoti G D. Metall Trans, 1981; 12A: 1705

[3] Semiatin S L, Seetharaman V, Ghosh A K. Philos Trans Royal Soc London, 1999; 357A: 1487

[4] Seshacharyulu T, Medeiros S C, Morgan J T. Mater Sci Eng, 2000; A279: 289

[5] Miller R M, Bieler T R, Semiatin S L. Scr Mater, 1999; 40: 1387

[6] Kim S M, Kim J, Shin D H, Ko Y G, Lee C S, Semiatin S L. Scr Mater, 2004; 50: 927

[7] Wanjara P, Jahazi M, Monajati H, Yue S, Immarigeon J P. Mater Sci Eng, 2005; A396: 50

[8] Pan Y Q, Yang Z S. Rare Met Mater Eng, 1992; 21(3): 18

(潘雅琴, 杨昭苏. 稀有金属材料与工程, 1992; 21(3): 18)

[9] Wu B J, Chen S C. Forging Technol, 1992; 17(2): 11

(吴伯杰, 陈森灿. 锻压技术, 1992; 17(2): 11)

[10] Sun X J, Bai B Z, Gu J L, Chen N P. Rare Met, 2000; 24(3): 171

(孙新军, 白秉哲, 顾家琳, 陈南平. 稀有金属, 2000; 24(3): 171)

[11] Chen H Q, Lin H, Guo L, Cao C X. Mater Eng, 2007; (8): 32

(陈慧琴, 林海, 郭灵, 曹春晓. 材料工程, 2007; (8): 32)

[12] Semiatin S L, Beiler T R. Metall Mater Trans, 2001; 32A: 1787

[13] Semiatin S L, Beiler T R. Metall Mater Trans, 2001; 32A: 1871

[14] Beiler T R, Semiatin S L. Int J Plast, 2002: 18: 1165

[15] Semiatin S L, Beiler T R. Acta Mater, 2001; 49: 3565

[16] Ko Y G, Hwang D Y, Shin D H, Lee S, Lee C S. Mater Sci Eng, 2008; A493: 164

[17] Oh S I, Semiatin S L, Jonas J J. Metall Trans, 1992; 23A: 963

[18] Yan S C, Cheng M, Zhang S H, Zhang H Y, Zhang W H, Zhang L W. Chin J Mater Res, 2009; 24: 239

(闫士彩, 程明, 张士宏, 张海燕, 张伟红, 张立文. 材料研究学报, 2009; 24: 239)

[19] Suri S, Viswanathan G B, Neeraj T, Hou D H, Mills M J. Acta Mater, 1999; 47: 1019

[20] Venkataramani G, Kirane K, Ghosh S. Int J Plast, 2008; 24: 428

[21] Song H W, Zhang S H, Cheng M. Trans Nonferrous Met Soc China, 2010; 20: 2168

[22] Paton N E, Backofen W A. Metall Trans, 1970; 1A: 2839

[23] Eshelby J D. Phys Status Solidi, 1963; 3: 2057

[24] Beijing Institute of Aeronautical Materials. Materials Data Handbook. Beijing: China National Aero–engine Company Ltd, 2000: 1277

(北京航空材料研究院. 材料数据手册. 北京: 中国航空发动机有限公司出版, 2000: 1277)

[25] Song H W, Zhang S H, Cheng M, Men F, Bao C L. Int J Modern Phy, 2009; 23B: 875

[26] Savage M F, Tatalovich J, Zupan M, Hemker K J, Mills M J. Mater Sci Eng, 2001; A319–321: 398

[27] Salem A A, Semiatin S L. Mater Sci Eng, 2009; A508: 114
[1] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[2] 陈连生, 李跃, 张明山, 田亚强, 郑小平, 徐勇, 张士宏. 两相区位错增殖对Mn元素配分及低碳钢贝氏体组织的影响[J]. 金属学报, 2017, 53(11): 1418-1426.
[3] 鲁世强, 王克鲁, 李鑫, 刘诗彪. 一种模拟和预测金属锻造过程动态再结晶的新方法[J]. 金属学报, 2014, 50(9): 1128-1136.
[4] 李鑫; 鲁世强; 王克鲁; 赵为纲; 李臻熙; 曹春晓 . 应用Murty准则优化TC11钛合金高温变形参数[J]. 金属学报, 2007, 43(12): 1268-1274 .
[5] 苏祖武;姚泽坤;郭鸿镇;刘建超;刘建宇;崔健;刘果青;姜明;应志毅. TC11钛合金双性能盘研究[J]. 金属学报, 1996, 32(4): 377-381.
[6] 苏祖武;孟国文;郭鸿镇;刘建超;姚泽坤;杨昭苏;胡宗式. TC11钛合金棒材显微组织等轴细晶化工艺研究[J]. 金属学报, 1991, 27(5): 79-82.