Please wait a minute...
金属学报  2011, Vol. 47 Issue (3): 269-274    DOI: 10.3724/SP.J.1037.2010.00476
  论文 本期目录 | 过刊浏览 |
APT和萃取复型研究压力容器模拟钢中富Cu团簇的析出
楚大锋1,徐刚1,王伟1,彭剑超2,王均安2,周邦新1
1. 上海大学材料研究所, 上海 200072
2. 上海大学微结构重点实验室, 上海 200444
APT AND EXTRACTION REPLICA CHARACTERIZATION OF Cu–RICH CLUSTERS PRECIPITATED IN PRESSURE VESSEL MODEL STEELS
CHU Dafeng 1, XU Gang 1, WANG Wei 1, PENG Jianchao 2, WANG Jun’an 2,ZHOU Bangxin 1
1. Institute of Materials, Shanghai University, Shanghai 200072
2. The Key Laboratory for Advanced Micro–Analysis, Shanghai University, Shanghai 200444
引用本文:

楚大锋 徐刚 王伟 彭剑超 王均安 周邦新. APT和萃取复型研究压力容器模拟钢中富Cu团簇的析出[J]. 金属学报, 2011, 47(3): 269-274.
, , , , , . APT AND EXTRACTION REPLICA CHARACTERIZATION OF Cu–RICH CLUSTERS PRECIPITATED IN PRESSURE VESSEL MODEL STEELS[J]. Acta Metall Sin, 2011, 47(3): 269-274.

全文: PDF(1717 KB)  
摘要: 用原子探针层析技术(APT)和萃取复型方法研究了核反应堆压力容器模拟钢中富Cu原子团簇的析出. 提高了Cu含量的压力容器模拟钢经过880 ℃水淬, 再经过660 ℃/10 h调质处理, 随后在370 ℃进行不同时间的时效处理,利用APT对时效4500 h的样品分析结果显示, 样品中富Cu原子团簇的数量密度达 到3.1×1023m-3. 富Cu团簇大小在1-5 nm范围内时,随着团簇长大含Cu量也迅速增加. Ni和Mn除了在Cu团簇中发生偏聚外,还会在团簇的周围发生富集. 用4%硝酸酒精溶液作腐蚀液可以将小至5 nm的富Cu团簇从α-Fe中萃取出来, HRTEM和EDS分析显示, 富Cu团簇中存在孪晶结构,虽然大多数团簇是含Cu 10%-80%(原子分数)的Cu-Fe(Ni, Mn)合金, 但都是9R或fcc结构的均匀固溶体.
关键词 压力容器模拟钢 富Cu原子团簇 原子探针层析技术 萃取复型 高分辨透射电子显微镜    
Abstract:The precipitation of Cu–rich clusters in reactor pressure vessel (RPV) model steel was investigated by means of atom probe tomography (APT), extraction replica (ER) and HRTEM. RPV model steel was prepared by vacuum induction furnace melting with higher content of Cu (0.6%, mass fraction). The ingot (about 50 kg of weight) was forged and hot–rolled to 4 mm in thickness and then cut to specimens of 40 mm×30 mm. Those specimens were further heat treated by 880 ℃/0.5 h water quenching and 660 ℃/10 h tempering, and finally aged at 370 ℃ for different time from 1000 to 6000 h. 4% nitric acid alcohol solution was used as an etchant to extract the precipitates of Cu–rich clusters from α–Fe matrix. The results obtained by APT analysis show that the number density of Cu–rich clusters reaches 3.1×1023 m−3 in the specimen aged at 370 ℃ for 4500 h, and the Cu content in the clusters increases rapidly during their growth from 1 nm to 5 nm. The segregation of Ni and Mn elements within and around the Cu–rich clusters was detected. The results obtained by ER, EDS and HRTEM analyses show that the majority of Cu–rich clusters are Cu–Fe (Ni, Mn) alloys with 10%—80% Cu (atomic fraction)but they are a single phaswith R or fcc crystal structure.
Key wordsrector pressure vessel model steel    Cu–rich cluster    atom probe tomography    extrction replica    high resolution transmission electron microscopy
收稿日期: 2010-09-14     
基金资助:

国家重点基础研究发展计划项目2006CB605003和国家自然科学基金重点项目50931003资助

作者简介: 楚大锋, 男, 1984年生, 硕士生
[1] Pareige P, Russell K F, Miller M K. Appl Surf Sci, 1996; 94: 362

[2] Worall G M, Buswell J T, English C A, Hetherington M G, Smith G D. J Nucl Mater, 1987; 148: 107

[3] Akamatsu M, Van Duysen J C, Pareige P, Auger P. J Nucl Mater, 1995; 225: 192

[4] Preige P, Van Duysen J C, Auger P. Appl Surf Sci, 1993; 67: 342

[5] Auger P, Pareige P, Welzel S, Van duysen J C. J Nucl Mater, 2000; 280: 331

[6] Miller M K, Burke M G. J Phys, 1987; 48C: 429

[7] Monzen R, Iguchi M, Jenkins M L. Philos Mag Lett, 2000; 80: 137

[8] Miller M K, Brenner S S. In: Swanson L W, Bell A, eds., Proc 28th Int Field Emission Symposium, The Oregon Graduate Center, Beaverton, OR, 1981; 6: 27

[9] Toyama T, Nagai Y, Tang Z, Hasegawa M, Almazouzi A, Van Walle E, Gerard R. Acta Mater, 2007; 55: 6852

[10] Zhou B X, Liu W Q. Mater Sci Technol, 2007; 15: 405

(周邦新, 刘文庆. 材料科学与工艺, 2007; 15: 405)

[11] Miller M K. Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers, 2000: 25

[12] Miller M K, Russell K F. J Nucl Mater, 2007; 371: 145

[13] Zhu C, Xiong X Y, Cerezo A, Hardwicke R, Krauss G, Smith G D. Ultramicroscopy, 2007; 107: 808

[14] Wang W, Zhu J J, Lin M D, Zhou B X, Liu W Q. J Univ Sci Technol Beijing, 2010; 1: 39

(王伟, 朱娟娟, 林民东, 周邦新, 刘文庆. 北京科技大学学报, 2010; 1: 39)

[15] Pareige P, Auger P, Moloudi S, Van Duysen J C, Akamatsu M. Ann Phys, 1997; 22C: 117

[16] Hornbogen E, Glenn R C. Trans Metall Soc AIME, 1960; 218: 1064

[17] Zhu J J, Wang W, Lin M D, Liu W Q, Wang J A, Zhou B X. J Shanghai Univ, 2008; 14: 525

(朱娟娟, 王伟, 林民东, 刘文庆, 王均安, 周邦新. 上海大学学报(自然科学版), 2008; 14: 525)

[18] Li B L, Zhu M, Li L, Luo K C, Li Z X. Acta Metall Sin, 1997; 33: 420

(李柏林, 朱敏, 李隆, 罗堪昌, 李祖鑫. 金属学报, 1997; 33: 420)

[19] Othen P J, Jenkins M L, Smith G D W. Philos Mag, 1994; 70A: 1
[1] 宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究[J]. 金属学报, 2018, 54(9): 1236-1244.
[2] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[3] 汪波, 王晓姣, 宋辉, 严菊杰, 邱涛, 刘文庆, 李慧. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响*[J]. 金属学报, 2014, 50(6): 685-690.
[4] 王晓姣, 沈琴, 严菊杰, 邱涛, 汪波, 李慧, 刘文庆. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点[J]. 金属学报, 2014, 50(11): 1305-1310.
[5] 刘文庆,刘庆冬,顾剑锋. 原子探针层析技术(APT)最新进展及应用[J]. 金属学报, 2013, 49(9): 1025-1031.
[6] 徐刚 蔡琳玲 冯柳 周邦新 刘文庆 王均安. 利用APT对RPV模拟钢中界面上原子偏聚特征的研究[J]. 金属学报, 2012, 48(7): 789-796.
[7] 徐刚,蔡琳玲,冯柳,周邦新,王均安,张海生. 富Cu团簇的析出对RPV模拟钢韧-脆转变温度的影响[J]. 金属学报, 2012, 48(6): 753-758.
[8] 徐刚,蔡琳玲,冯柳,周邦新,刘文庆,王均安. 利用APT对RPV模拟钢中富Cu原子团簇析出的研究[J]. 金属学报, 2012, 48(4): 407-413.
[9] 徐刚 楚大锋 蔡琳玲 周邦新 王伟 彭剑超. RPV模拟钢中纳米富Cu相的析出和结构演化研究[J]. 金属学报, 2011, 47(7): 905-911.