Please wait a minute...
金属学报  1963, Vol. 6 Issue (2): 121-130    
  论文 本期目录 | 过刊浏览 |
液态CaO-SiO_2和CaO-Al_2O_3-SiO_2渣中CaO的活度
邹元爔;赵彭年;曹兆民
中国科学院冶金研究所;中国科学院冶金研究所;中国科学院冶金研究所
ACTIVITY OF CaO IN LIQUID CaO-SiO_2 AND CaO-Al_2O_3-SiO_2 SLAGS
CHOU YUAN-HSI;CHAO PENG-NIAN;TSAO CHAO-MING Institute of Metallurgy;Academia Sinica
引用本文:

邹元爔;赵彭年;曹兆民. 液态CaO-SiO_2和CaO-Al_2O_3-SiO_2渣中CaO的活度[J]. 金属学报, 1963, 6(2): 121-130.
, , . ACTIVITY OF CaO IN LIQUID CaO-SiO_2 AND CaO-Al_2O_3-SiO_2 SLAGS[J]. Acta Metall Sin, 1963, 6(2): 121-130.

全文: PDF(970 KB)  
摘要: 利用石灰的加碳还原反应,设计了一个新的研究方法,以直接测定液态高炉型渣中CaO的活度.这一方法的成功,依靠溶剂金属的正确选择以降低熔液中钙的化学位,而使金属钙量提高到可以用化学分析测定的水平.我们估计钙在锡稀溶液中的活度系数很小,可能符合于我们的要求,因此研究了下列反应:CaO+C(石墨)=Ca(锡)+CO(气).以测定液态CaO-SiO_2和CaO-Al_2O_3-SiO_2渣中CaO的活度,在上式中符号下波纹线表示溶于渣中的组分,直线表示溶子金属中的组分,下同.对于CaO-Si0_2系,应用Gibbs-Duhem关系从CaO活度值算出了SiO_2的活度值,并根据一个统计力学模型讨论了活度曲线的形状.从CaO-Al_2O_3-SiO_2系的研究结果,可知在所研究的整个碱度范围內,渣中存在10%Al_2O_3都使CaO的活度增加;当Al_2O_3为20%时,则对CaO活度的影响视碱度不同而异.对Al_2O_3的这种行为,根据炉渣的离子结构理论提出了解释.
Abstract:A new method,based on the carbothermic reduction of lime,has been devised forthe direct determination of the activity of lime in liquid blast-furnace-type slags.Thesuccess of the method depends upon the proper choice of the solvent metal to lower thechemical potential of calcium in the melt.Owing to the expected very small activity co-efficient of calcium in dilute solutions in tin,the reactionCaO(in slags)+C=Ca(in tin)+CO.has been studied with a view to evaluating activities of lime in liquid CaO-SiO_2 andCaO-Al_2O_3-SiO_2 slags.The activity values in the CaO-SiO_2 system have been used toderive silica activities through the Gibbs-Duhem relationship.The shape of the activitycurves is briefly discussed on the basis of a statistical mechanical model.It has been found from the results on the ternary system that the activity of lime isincreased by the presence of 10% alumina in the slags for the entire basicity range underinvestigation.An explanation based on the ionic constitution of slags is offered for thisbehaviour of alumina.
收稿日期: 1963-02-18     
[1] 邹元燨:金属学报,1956,1,127.
[2] Chou,Y.H.(邹元燨):Freiberger Forschungsh.,1957,B15,18.
[3] Carter,P.T.,Macfarlane,T.G.:J.Iron Steel Inst.,1957,185,54.
[4] Baird,J.D.,Taylor,J.:Trans.Faraday Soc.,1958,54,526.
[5] Yang,L.(杨琳),McCabe,C.L.,Miller,R.:Physical Chemistry of Steelmaking,(Wiley,1958) ,p.63.
[6] Sanbongi,K.,Omori,Y.:The Physical Chemistry of Metallic Solutions and Intermetallic Compounds,(National Physical Laboratory Symposium,1959) ,vol.2,6D,No.9,p.2.
[7] Langenberg,F.C.,Chipman,J.:Trans.AIME,1959,215,958.
[8] Kay,D.A.R.,Taylor,J.:Trans.Faraday Soc.,1960,56,1372.
[9] 三本木贡冶、大森康男:日本金属学会志,1961,25,(2) ,139.
[10] 邹元燨、金家敏等,未发表.
[11] 邹元燨、周继程,待发表。
[12] Chang,L.C.(张禄经):Doctorate Thesis,Department of Metallurgy,Carnegie Institute of Technology,1946.
[13] 坂上六郎:铁と钢,1953,39,587;39,688;39,1240.
[14] #12
[15] Sanbongi,K.,Ohtani,M.:Sci.Rept.Res.Inst.Tohoku Univ.,1952,A4,(1) ,59.
[16] Fulton,J.C.,Chipman,J.:Trans.AIME,1954,200,1136.
[17] Drowart,J.,De Maria,G.:Silicon Carbide,A High Temperature Semiconductor(Pergamon,1960) ,p.16.
[18] Scace,R.I.,Slack,G.A.:Silicon Carbide,A High Temperature Semiconductor,(Pergamon,1960) ,p.24.
[19] McCaffery,R.S.,Oesterle,J.F.:Trans AIME,1923,69,606.
[20] #12
[21] Darken,L.S.:Thermodynamics in Physical Metallurgy,(ASM.,1952) ,p.28.
[22] Taylor,C.R.,Chipman,J.:Trans AIME,1943,154,228.
[23] Richardson,F.D.:The Physical Chemistry of Melts,(IMM.,London,1953) ,p.75.
[24] Philbrook,W.O.,Goldman,K.M.,Helzel,M.M.:Trans.AIME,1950,188,361.
[25] 横山辰雄、冈俊平、尾崎圭介:日本工业化学会志,1952,555,64.
[26] #12
[27] #12
[28] #12
[29] Báák,T.:Acta Chem.Scand.,1955,9,1540.
[30] Bockris,J.O'M.,Lowe,D.C.:Proc.Roy.Soc.,1954,A226,423.
[31] #12
[32] Henderson,J.,Yang,L.(杨琳),Derge,G.:Trans.AIME,1961,221,56.
[33] McCoy,C.W.,Philbrook,W.O.:Trans.AIME,1958,212,226.
[34] 赵彭年、邹元燨,金属学报,1963,6,28.
[35] Chipman,J.:J.Am.Chem.Soc.,1961,83,1762. Chipman,J.:Trans.AIME,1961,221,1272.
[36] Arizabal,A.,McCabe,C.L.:J.Metals,1962,14,(1) ,87.
[37] 泽村 企好:铁と钢,1961,47,1873.
No related articles found!