Please wait a minute...
金属学报  1965, Vol. 8 Issue (2): 251-258    
  论文 本期目录 | 过刊浏览 |
纯铜表面张力的温度系数
严铄
中国科学院金属研究所
THE TEMPERATURE COEFFICIENT OF SURFACE TENSION OF PURE COPPER
YEN SHUO Institute of Metal Research; Academia Sinica
引用本文:

严铄. 纯铜表面张力的温度系数[J]. 金属学报, 1965, 8(2): 251-258.
. THE TEMPERATURE COEFFICIENT OF SURFACE TENSION OF PURE COPPER[J]. Acta Metall Sin, 1965, 8(2): 251-258.

全文: PDF(763 KB)  
摘要: 用静止液滴法测定了纯铜在熔点到1500℃温度范围内的加热和冷却过程中表面张力随温度的变化。结果表明:纯铜的表面张力温度系数为—0.470达因/厘米·度。如果样品中残存有某些微量表面活性杂质,它将使表面张力剧烈下降,在升温过程中,这些杂质不断减少,因而表面张力将随温度的上升而增加,且在1350℃出现极大值。
Abstract:The change of surface tension of molten copper with temperature was measured bymeans of the sessile drop method both on heating and on cooling. It is shown that thetemperature coefficient of surface tension is negative, being -0.470 dyne/cm·℃ at1100-1500℃. A maximum was observed on the surface tension-temperature curve at1350℃, indicating an apparent positive coefficient up to this temperature. This is ex-plained by the presence of residual surface active impurities in the original sample whichlowered the surface tension, and the removal of such impurities during heating.
收稿日期: 1965-02-18     
[1] Turnbull, D.: J. Chem. Phys., 1950, 18, 769.
[2] Залетаева, Р. П., Крещановский, Н. С., Кунин, Л. Л.: 1951, (2) , 26.
[3] Bailey, G. L. J., Watkins, H. C.: j. Inst. Metals, 1951, 80, 57.
[4] Humenik, Jr. M., Parikh, N. M.: J. Am. Ceram. Soc., 1956, 39, 60.
[5] Kingery, W. D.: Am. Ceram. Soc. Bull., 1956, 35, 108.
[6] Уманский,Я.С,Финкельштейн,Б.Н.,Влантер,М.Е.著,中国科学院金属研究所译:金属学物理基础,(科学出版社,1958年),200页.
[7] Самарин,А.М.著,邹元爔等译:钢脱氧的物理化学基础,(科学出版社,1958年),139页.
[8] 陈念贻、张桂成:科学通报,1963,(3) ,68.
[9] #12
[10] Quincke, G.: Ann. Phys., 1869, 138, 141.
[11] Herzfeld, R.: Ann. Phys., 1897, 62, 450.
[12] Holman, E. J. L.: J. Iron Steel Inst. (London), 1923, 107, 517.
[13] Libman, E. E.: Phys. Rev., 1927, 29, 911.
[14] Smith, S. W.: J. Inst. Metals 1914, 12, 168.
[15] #12
[16] Drath, G., Sauerwald, F.: Z. Anorg. Allgem. Chem., 1927, 162, 301.
[17] Krause, W., Sauerwald, F.: Z. Anorg. Allgem. Chem., 1929, 181, 353.
[18] #12
[19] #12
[20] #12
[21] Becker, G., Harders, F., Kornfeld, H.: Arch. Eisenhuttenw., 1949, 363.
[22] Baes, C. F., Kellogg, H. H.: Trans. AIME, 1953, 197, 643.
[23] Kozakevitch, P., Chatel, S. Urbain, G. et al.: Rev. Met., 1955, 52, 139.
[24] Allen, B. C., Kingery, W. D.: Trans. AIME, 1959, 215, 30.
[25] #12
[26] 门间改三、须藤一:日本金属学会志,1960, 24, 374.
[27] Whalen, T. J., Humenik, M. Jr.: Trans. AIME, 1960, 218, 952.
[28] #12
[29] Metzger, G.: Z. Phys. Chem., 1959, 211, 1.
[30] Pawlek, F., Thielsch, W., Wuth, W.: Metall, 1961, 15, 1076.
[31] Gans, W., Pawlek, F., von Ropenack, A.: Z. Metallk., 1963, 54, 147.
[32] Bashforth, F., Adams, S. C.: An Attempt to test the theories of capillary action (Cambridge, 1883) .
[33] Urbain, G., Lucas, L. D.: The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, National Physical Laboratory Symposium, (H. M. Stationery Office, 1959) , vol. 2, No. 9, 4E.
[34] Hartmann, R., Schneider, R.: Z. Anorg. Allgem. Chem., 1929, 180. 275.
[35] #12
[36] White, D. W. G.: Trans. Am. Soc. Metals, 1962, 55, 757.
[37] Kozakevitch, P.: The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, National Physical Laboratory Symposium (H. M. Stationery Office, 1959) , vol. 1, No. 9, 1E.
[38] Kurkjian, C. R., Kingery, W. D.: J. Phys. Chem., 1956, 60, 961.
[39] Kingery, W. D., Humenik, M. Jr.: J. Phys. Chem., 1953, 57, 359.
[40] Cahill, J. A., Kirshenbaum, A. D.: J. Phys. Chem., 1962, 66. 1080.
No related articles found!