Please wait a minute...
金属学报  1989, Vol. 25 Issue (6): 30-36    
  论文 本期目录 | 过刊浏览 |
V-Ti-N微合金钢的晶粒粗化行为
唐国翌;郑炀曾;蔡其巩;朱静
燕山大学;燕山大学;冶金工业部钢铁研究总院;冶金工业部钢铁研究总院
GRAIN COARSENING TEMPERATURE OF V-Ti-N MICROALLOYING STEELS
TANG Guoyi;ZHENG Yangzeng;CAI Qigong;ZHU Jing Yanshan University; Qinhuangdao; Hebei Central Iron and Steel Research Institute; Ministry of Metallurgical Industry; Beijing TANG Guoyi; Department of Graduates; Central Iron and Steel Research Institute Ministry of Metallurgical Industry; Beijing 100081
引用本文:

唐国翌;郑炀曾;蔡其巩;朱静. V-Ti-N微合金钢的晶粒粗化行为[J]. 金属学报, 1989, 25(6): 30-36.
, , , . GRAIN COARSENING TEMPERATURE OF V-Ti-N MICROALLOYING STEELS[J]. Acta Metall Sin, 1989, 25(6): 30-36.

全文: PDF(1054 KB)  
摘要: 本文研究了化学成分和凝固后的冷却速度对V-Ti-N钢晶粒粗化温度(T_(GC))的影响。结果表明,微量Ti的加入可在钢中产生大量10um左右的细小含Ti颗粒,从而显著提高T_(GC)。当冷速大于某一临界值时,T_(GC)不随冷速的变化而升高。在模拟150mm连铸坯冷却条件时,T_(GC)对氮含量的变化不敏感。加入0.33wt-%Mo可使T_(GC)降低约100℃。T_(GC)对冷却条件的敏感性与Ti,N含量有关。
关键词 微合金化钢晶粒粗化温度微细颗粒凝固后冷却速度    
Abstract:The effects of chemical composition and cooling rate after solidifi-cation on the grain coarsening temperature, T_(GC), of the V-Ti-N microalloying steelshave been investigated. It is shown that the T_(GC) may be obviously raised byadding even a little Ti to the base steels so as to precipitate a great deal of fineTi-bearing grains of about 10 nm. The T_(GC) does not increase with the cooling rate,as it is over a certain critical value. The T_(GC) is insensitive to any variation ofN content at simulated cooling condition of 150mm continuouscast slab. TheT_(GC) may be dropped down about 100℃ by adding 0.33 wt-% Mo to the steels.The sensitivity of T_(GC) to cooling condition is related with Ti and N contents.
Key wordsmicroalloying steel    grain coarsening temperature    cooling rate after solidification
收稿日期: 1989-06-18     
1 唐国翌.东北重型机械学院硕士论文,1986
2 郑炀曾.唐国翌.物理测试,1986;(2) :54
3 徐祖耀.金属材料热力学,北京:科学出版社,1981:242
4 Carlsson J-E, Roberts W, Sandberg A. Swedish Institute for Metals Research Report, № 1438, 1980: 5
5 笠松裕,高嶋修嗣,细谷隆司.R&D神户制钢技报,1979;29(4) :53
6 Matsuda S, Okumura N. Trans Iron Steel Inst Jpn, 1978; 18: 198
7 George T J, Kennon N F. J Aust Inst Met, 1972; 17: 73
8 Hillert M. Acta Metall, 1965; 13: 227
[1] 聂文金 尚成嘉 吴圣杰 施培建 程俊杰 张晓兵. Nb对奥氏体热变形后等温回复的影响[J]. 金属学报, 2012, 48(7): 775-781.
[2] 毛新平; 孙新军; 康永林; 林振源 . 薄板坯连铸连轧Ti微合金化钢的物理冶金学特征[J]. 金属学报, 2006, 42(10): 1091-1095 .
[3] 钟云龙; 刘国权; 刘胜新 . 新型油井管钢33Mn2v的奥氏体晶粒长大规律[J]. 金属学报, 2003, 39(7): 699-703 .
[4] 唐国翌;郑炀曾;朱静;蔡其巩. 09MnVTiN钢微细V-Ti复合碳氮化物加热时的特征和行为[J]. 金属学报, 1991, 27(5): 45-48.
[5] 徐温崇;孙福玉. Ti,Nb,V复合碳氮化物点阵常数的测定[J]. 金属学报, 1989, 25(6): 146-148.
[6] 徐温崇;马翔;孙福玉;宗贵升. 控轧过程中Nb,V,Ti碳氮化物的应变诱导等温析出[J]. 金属学报, 1988, 24(6): 392-398.