Please wait a minute...
金属学报  1992, Vol. 28 Issue (1): 67-76    
  论文 本期目录 | 过刊浏览 |
非晶态金属的结构与合金的玻璃形成能力
卢柯
中国科学院金属研究所;快速凝固非平衡合金国家重点实验室
STRUCTURE AND GLASS FORMING ABILITY (GFA) OF AMORPHOUS ALLOYS
LU Ke Institute of Metal Research; Academia Sinica; Shenyang 110015
引用本文:

卢柯. 非晶态金属的结构与合金的玻璃形成能力[J]. 金属学报, 1992, 28(1): 67-76.
. STRUCTURE AND GLASS FORMING ABILITY (GFA) OF AMORPHOUS ALLOYS[J]. Acta Metall Sin, 1992, 28(1): 67-76.

全文: PDF(694 KB)  
摘要: 本文提出了一种非晶态金属的微观结构模型—Cluster模型,根据此模型的统计热力学计算导出了一个表征合金玻璃形成能力(GFA)的参量: α_c=[1-2.08/Φ_m]T_g/T_m其中T_g为玻璃转变温度,T_m为熔点,Φ_m为合金的熔化熵,α_c值越大合金越易形成非晶态。这个新的合金GFA判据不但为过去的几种GFA经验判据提供了理论依据,而且比它们更合理,准确
关键词 非晶态金属结构模型玻璃形成能力(GFA)有序原子集团    
Abstract:A new microstructure model is developed for amorphous alloys, so called Clus-ter model, in which the amorphous phase is thought of composing of randomly distributed or-dered clusters of different sizes. Thermodynamic calculation on this model deduces a parameter describing the glass forming ability of metallic alloys: a_c=(1-2.08/φm)T_g/ T_m, where T_g is glass transition temperature, T_m is the melting temperature, and φm is entralpy change of melt-ing. It is believed that easy glass forming alloy systems have larger values of a_c This new criter-ion of GFA not only provides the theoretical background for several GFA criteria in the litera-ture cited, but also can predict the GFA of many alloy systems more reasonably and accurately.
Key wordsamorphous metal    structure model    glass forming ability (GFA)    ordered cluster
收稿日期: 1992-01-18     
基金资助:国家自然科学基金
1 Duwez P, Willens R H, Klement W Jr. J Appl Phys, 1960; 31: 1136
2 Marcus M, Turnbull D. Mater Sci Eng, 1976; 23: 211
3 Donald I W, Davies H A. J Non-Cryst Solids, 1978; 30: 77.
4 Guntherodt H J, Oelhafen P, Lapka R, Kunzi H U, Indlekofer G, Krieg J et al. J Phys (Paris) Colloque, 1980; 41(C8) : 381
5 Sprusil B, Bergmann H W. In: Steeb S, Warlimont H eds., Rapidly Quenched Metals, Amsterdam: North-Holland, 1985: 255
6 Davies H A. In: Cantor B ed., Rapidly Quenched Metals Ⅲ, Vol. Ⅰ, Proc 3rd Int Conf on Rapidly Quenched Metals, London: The Metals Society, 1978: 1
7 Davies H A. In: Luborsky F E ed., Amorphous Metallic Alloys, London: Butterworths, 1983: 8
8 Sommer F, Duddek G, Predel B. Z Metallk, 1978; 69: 587
9 Egami T. In: Luborsky F E ed., Amorphous Metallic Alloys, London: Butterworths, 1983: 100
10 卢柯,王景唐.金属学报,1990;26:B316
11 Fujita F E. In: Masumoto T, Suzuki K eds., Rapidly Quenched Metals 4. Proc 4th Int Conf on Rapidly Quenched Metals, Sendai, August 24--28, 1981, The Japan Institute of Metals, 1982: 301
12 Hamada t, Fujita F E. In: Masumoto T, Suzuki K eds., Rapidly Quenched Metals 4, Proc 4th Int Conf on Rapidly Quenched Metals, Sendai, August 24--28, 1981, The Japan Institute of Metals, 1982: 319
13 Bernal J D. Nature, 1960; 185: 68 Bernal J D. Proc R Soc London, Ser. A, 1964; A280: 299
14 Nishi Y, Suzuki K, Masumoto T. In: Masumoto T, Suzuki K eds., Rapidly Quenched Metals 4, Proc 4th Int Conf on Rapidly Quenched Metals, Sendai, August 24--28, 1981, The Japan Institute of Metals, 1982: 217
15 Nishi Y, Morohoshi T, Kawakami M, Suzuki K, Masumoto T. In: Masumoto T, Suzuki K eds., Rapidly Quenched Metals 4, Proc 4th Int Conf on Rapidly Quenched Metals, Sendai, August 24--28, 1981, The Japan Institute of Metals, 1982: 1113
[1] 王清 查钱锋 刘恩雪 董闯 王学军 谭朝鑫 冀春俊. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012, 48(10): 1201-1206.
[2] 马仁涛 郝传璞 王清 任明法 王英敏 董闯. 低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计[J]. 金属学报, 2010, 46(9): 1034-1040.
[3] 卢柯;王景唐. 非晶态合金晶化过程中晶体长大速率的数学表达式[J]. 金属学报, 1991, 27(4): 105-110.
[4] 卢柯;王景唐. 非晶态合金晶化过程的一个新微观机制[J]. 金属学报, 1991, 27(1): 115-120.