|
|
Ni-Cr合金在富CO2 气氛中的高温腐蚀研究进展 |
谢云1( ), Zhang Jianqiang2, 彭晓1 |
1 南昌航空大学 材料科学与工程学院 南昌 330063 2 School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia |
|
Research Advances in High Temperature Corrosion of Ni-Cr Alloys in CO2-Rich Environments |
XIE Yun1( ), Zhang Jianqiang2, PENG Xiao1 |
1 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 2 School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia |
引用本文:
谢云, Zhang Jianqiang, 彭晓. Ni-Cr合金在富CO2 气氛中的高温腐蚀研究进展[J]. 金属学报, 2024, 60(6): 731-742.
Yun XIE,
Jianqiang Zhang,
Xiao PENG.
Research Advances in High Temperature Corrosion of Ni-Cr Alloys in CO2-Rich Environments[J]. Acta Metall Sin, 2024, 60(6): 731-742.
1 |
Zhang S H, Hu K, Liu X, et al. Corrosion-erosion mechanism and research prospect of bare materials and protective coatings for power generation boiler [J]. Acta Metall. Sin., 2022, 58: 272
doi: 10.11900/0412.1961.2021.00464
|
1 |
张世宏, 胡 凯, 刘 侠 等. 发电锅炉材料与防护涂层的磨蚀机制与研究展望 [J]. 金属学报, 2022, 58: 272
doi: 10.11900/0412.1961.2021.00464
|
2 |
He H S, Yu L M, Liu C X, et al. Research progress of a novel martensitic heat-resistant steel G115 [J]. Acta Metall. Sin., 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
|
2 |
何焕生, 余黎明, 刘晨曦 等. 新一代马氏体耐热钢G115的研究进展 [J]. 金属学报, 2022, 58: 311.
doi: 10.11900/0412.1961.2021.00185
|
3 |
Stanger R, Wall T, Spörl R, et al. Oxyfuel combustion for CO2 capture in power plants [J]. Int. J. Greenhouse Gas Control, 2015, 40: 55
|
4 |
Zheng C G, Liu Z H, Xiang J, et al. Fundamental and technical challenges for a compatible design scheme of oxyfuel combustion technology [J]. Engineering, 2015, 1: 139
|
5 |
Liu J H. Research and development of oxy-fuel combustion for coal-fired boiler in China [J]. Therm. Power Gener., 2020, 49(7): 48
|
5 |
刘建华. 国内燃煤锅炉富氧燃烧技术进展 [J]. 热力发电, 2020, 49(7): 48
|
6 |
Bordenet B. Influence of novel cycle concepts on the high-temperature corrosion of power plants [J]. Mater. Corros., 2008, 59: 361
|
7 |
Buhre B J P, Elliott L K, Sheng C D, et al. Oxy-fuel combustion technology for coal-fired power generation [J]. Prog. Energy Combust. Sci., 2005, 31: 283
|
8 |
Syed A U, Simms N J, Oakey J E. Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass [J]. Fuel, 2012, 101: 62
|
9 |
Zeng Z, Natesan K, Cai Z, et al. Effect of coal ash on the performance of alloys in simulated oxy-fuel environments [J]. Fuel, 2014, 117: 133
|
10 |
Syed A U, Hussain T, Simms N J, et al. Microscopy of fireside corrosion on superheater materials for oxy-fired pulverised fuel power plants [J]. Mater. High Temp., 2012, 29: 219
|
11 |
Stein-Brzozowska G, Maier J, Scheffknecht G. Impact of the oxy-fuel combustion on the corrosion behavior of advanced austenitic superheater materials [J]. Energy Procedia, 2011, 4: 2035
|
12 |
Holcomb G R, Tylczak J, Meier G H, et al. Fireside corrosion in oxy-fuel combustion of coal [J]. Oxid. Met., 2013, 80: 599
|
13 |
Abellán J P, Olszewski T, Meier G H, et al. The oxidation behaviour of the 9% Cr steel P92 in CO2- and H2O-rich gases relevant to oxyfuel environments [J]. Int. J. Mater. Res., 2010, 101: 287
|
14 |
Huczkowski P, Najima S, Chyrkin A, et al. Corrosion behavior of austenitic stainless steels in oxidizing and reducing gases relevant to oxyfuel power plants [J]. JOM, 2018, 70: 1502
|
15 |
Zheng Y, Shirani Bidabadi M H, Yang L, et al. Pre-oxidation effect on oxidation behavior of F91 in carbon dioxide at 550oC [J]. Oxid. Met., 2018, 90: 317
|
16 |
Xi X T, Kong C, Zhang J Q. Effect of cyclic reaction on corrosion behavior of chromium-containing alloys in CO2 gas at 650oC [J]. Oxid. Met., 2020, 93: 131
|
17 |
Cao C, Jiang C Y, Lu J T, et al. Corrosion behavior of austenitic stainless steel with different Cr contents in 700oC coal ash/high sulfur flue-gas environment [J]. Acta Metall. Sin., 2022, 58: 67
|
17 |
曹 超, 蒋成洋, 鲁金涛 等. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为 [J]. 金属学报, 2022, 58: 67
|
18 |
Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
|
18 |
刘正东, 陈正宗, 何西扣 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
|
19 |
Schütze M, Quadakkers W J. Future directions in the field of high-temperature corrosion research [J]. Oxid. Met., 2017, 87: 681
|
20 |
Zhao S Q, Xie X S, Smith G D. Corrosion of a new nickel base superalloy in coal-fired boiler environments [J]. Acta Metall. Sin., 2004, 40: 659
|
20 |
赵双群, 谢锡善, Smith G D. 新型镍基高温合金在模拟燃煤锅炉环境中的腐蚀 [J]. 金属学报, 2004, 40: 659
|
21 |
Mao J X. Latest development of high-temperature metallic materials in 700oC ultra-supercritical units [J]. Electr. Power Constr., 2013, 34(8): 69
|
21 |
毛健雄. 700℃超超临界机组高温材料研发的最新进展 [J]. 电力建设, 2013, 34(8): 69
doi: 10.3969/j.issn.1000-7229.2013.08. 013
|
22 |
Sun F, Gu Y F, Yan J B, et al. Phenomenological and microstructural analysis of intermediate temperatures creep in a Ni-Fe-based alloy for advanced ultra-supercritical fossil power plants [J]. Acta Mater., 2016, 102: 70
|
23 |
Xu Y X, Lu J T, Li W Y, et al. Effect and role of alloyed yttrium on the fireside corrosion behaviour of Ni-Fe based alloys for 750oC ultra-supercritical boiler applications [J]. Corros. Sci., 2018, 143: 148
|
24 |
Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. 2nd Ed., Cambridge: Cambridge University Press, 2006: 115
|
25 |
Young D J, Zhang J Q. Alloy corrosion by hot CO2 gases [J]. JOM, 2018, 70: 1493
|
26 |
Rouillard F, Furukawa T. Corrosion of 9-12Cr ferritic-martensitic steels in high-temperature CO2 [J]. Corros. Sci., 2016, 105: 120
|
27 |
Huenert D, Kranzmann A. Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels [J]. Corros. Sci., 2011, 53: 2306
|
28 |
Meier G H, Jung K, Mu N, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys [J]. Oxid. Met., 2010, 74: 319
|
29 |
Nguyen T D, Zhang J Q, Young D J. Growth of Cr2O3 blades during alloy scaling in wet CO2 gas [J]. Corros. Sci., 2018, 133: 432
|
30 |
Nguyen T D, La Fontaine A, Cairney J M, et al. Effects of Si, Mn, and water vapour on the microstructure of protective scales grown on Fe-20Cr in CO2 gas [J]. Mater. High Temp., 2018, 35: 22
|
31 |
Yu C, Nguyen T D, Zhang J Q, et al. Sulfur effect on corrosion behavior of Fe-20Cr-(Mn, Si) and Fe-20Ni-20Cr-(Mn, Si) in CO2-H2O at 650oC [J]. J. Electrochem. Soc., 2016, 163: C106
|
32 |
Oleksak R P, Tylczak J H, Teeter L, et al. High-temperature corrosion of chromia-forming Ni-based alloys in CO2 containing impurities [J]. High Temp. Corros. Mater., 2023, 100: 597
|
33 |
Oleksak R P, Tylczak J H, Holcomb G R, et al. High temperature oxidation of Ni alloys in CO2 containing impurities [J]. Corros. Sci., 2019, 157: 20
|
34 |
Zeng Z, Natesan K, Cai Z, et al. Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment [J]. Fuel, 2016, 178: 10
|
35 |
Pan P Y, Li T Y, Wang Y Z, et al. Effect of temperature on hot corrosion of nickel-based alloys for 700oC A-USC power plants [J]. Corros. Sci., 2022, 203: 110350
|
36 |
Jiang C Y, Xie Y, Kong C, et al. Corrosion behaviour of Ni-Cr alloys in mixed oxidising gases at 650oC [J]. Corros. Sci., 2020, 174: 108801
|
37 |
Xie Y, Zhang J Q, Young D J. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere [J]. J. Electrochem. Soc., 2017, 164: C285
|
38 |
Nguyen T D, Xie Y, Ding S J, et al. Oxidation behavior of Ni-Cr alloys in CO2 at 700oC [J]. Oxid. Met., 2017, 87: 605
|
39 |
Wagner C. Reaktionstypen bei der oxydation von legierungen [J]. Z. Elektrochem., 1959, 63: 772
|
40 |
Rapp R A. The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys [J]. Acta Metall., 1961, 9: 730
|
41 |
Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
|
42 |
Xie Y, Zhang J Q, Young D J. Water vapour effects on corrosion of Ni-Cr alloys in CO2 gas at 650oC [J]. Corros. Sci., 2018, 136: 311
|
43 |
Wagner C. The theory of the warm-up process [J]. Z. Phys. Chem., 1933, 21: 25
|
44 |
Nguyen T D, Zhang J Q, Young D J. Microstructures of chromia scales grown in CO2 [J]. Mater. High Temp., 2015, 32: 16
|
45 |
Young D J, Nguyen T D, Felfer P, et al. Penetration of protective chromia scales by carbon [J]. Scr. Mater., 2014, 77: 29
|
46 |
Zhu D D, Chen J M, Chen J Z, et al. Atomic origin of CO2-promoted oxidation dynamics of chromia-forming alloys [J]. Acta Mater., 2024, 264: 119578
|
47 |
Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd Ed., Amsterdam: Elsevier, 2016: 435
|
48 |
Li T F. High Temperature Oxidation and Thermal Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 252
|
48 |
李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 252
|
49 |
Nguyen T D, Zhang J Q, Young D J. Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20CO2 at 700oC [J]. Corros. Sci., 2018, 130: 161
|
50 |
Pirón Abellán J, Olszewski T, Penkalla H J, et al. Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments [J]. Mater. High Temp., 2009, 26: 63
|
51 |
Nguyen T D, Zhang J Q, Young D J. Martensite formation in Fe-9Cr alloys exposed to low carbon activity gas [J]. Scr. Mater., 2013, 69: 9
|
52 |
Gheno T, Monceau D, Zhang J Q, et al. Carburisation of ferritic Fe-Cr alloys by low carbon activity gases [J]. Corros. Sci., 2011, 53: 2767
|
53 |
Subramanian G O, Lee H J, Kim S H, et al. Corrosion and carburization behaviour of Ni-xCr binary alloys in a high-temperature supercritical-carbon dioxide environment [J]. Oxid. Met., 2018, 89: 683
|
54 |
Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behav-ior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
|
55 |
Wolf I, Grabke H J. A study on the solubility and distribution of carbon in oxides [J]. Solid State Commun., 1985, 54: 5
|
56 |
Wolf I, Grabke H J, Schmidt P. Carbon transport through oxide scales on Fe-Cr alloys [J]. Oxid. Met., 1988, 29: 289
|
57 |
Chandra K, Kranzmann A, Saliwan Neumann R, et al. High temperature oxidation behavior of 9-12%Cr ferritic/martensitic steels in a simulated dry oxyfuel environment [J]. Oxid. Met., 2015, 83: 291
|
58 |
Otsuka N. Carburization of 9%Cr steels in a simulated oxyfuel corrosion environment [J]. Oxid. Met., 2013, 80: 565
|
59 |
Shen J, Liu S, Guo X H, et al. Simultaneous oxidation and carburization of a Fe-9Cr alloy under different oxygen pressures at 800oC [J]. Corros. Sci., 2017, 129: 1
|
60 |
Nguyen T D, La Fontaine A, Yang L M, et al. Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO2 gas [J]. Corros. Sci., 2018, 132: 125
|
61 |
Becker P, Young D J. Carburization resistance of nickel-base, heat-resisting alloys [J]. Oxid. Met., 2007, 67: 267
|
62 |
Ani M H B, Kodama T, Ueda M, et al. The effect of water vapor on high temperature oxidation of Fe-Cr alloys at 1073 K [J]. Mater. Trans., 2009, 50: 2656
|
63 |
Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
|
64 |
Essuman E, Meier G H, Żurek J, et al. Enhanced internal oxidation as trigger for breakaway oxidation of Fe-Cr alloys in gases containing water vapor [J]. Scr. Mater., 2007, 57: 845
|
65 |
Liu L, Yang Z G, Zhang C, et al. Effect of water vapour on the oxidation of Fe-13Cr-5Ni martensitic alloy at 973 K [J]. Corros. Sci., 2012, 60: 90
|
66 |
Young D J, Pint B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor [J]. Oxid. Met., 2006, 66: 137
|
67 |
Young D J. Effects of water vapour on the oxidation of chromia formers [J]. Mater. Sci. Forum, 2008, 595-598: 1189
|
68 |
Holcomb G R. Calculation of reactive-evaporation rates of chromia [J]. Oxid. Met., 2008, 69: 163
|
69 |
Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129
|
70 |
Essuman E, Meier G H, Zurek J, et al. Protective and non-protective scale formation of NiCr alloys in water vapour containing high- and low-pO2 gases [J]. Corros. Sci., 2008, 50: 1753
|
71 |
Mu N, Jung K Y, Yanar N M, et al. Water vapor effects on the oxidation behavior of Fe-Cr and Ni-Cr alloys in atmospheres relevant to oxy-fuel combustion [J]. Oxid. Met., 2012, 78: 221
|
72 |
Mu N, Jung K, Yanar N M, et al. The effects of water vapor and hydrogen on the high-temperature oxidation of alloys [J]. Oxid. Met., 2013, 79: 461
|
73 |
Nguyen T D, Zhang J Q, Young D J. Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20CO2-20H2O gas at 700oC [J]. Corros. Sci., 2020, 170: 108702
|
74 |
Xie Y. Corrosion behaviour of Ni-Cr-(Fe) alloys in dry and wet CO2 at high temperatures [D]. Sydney: The University of New South Wales, 2018
|
75 |
Xie Y, Nguyen T D, Zhang J Q, et al. Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800oC [J]. Corros. Sci., 2019, 146: 28
|
76 |
Auchi M, Hayashi S, Toyota K, et al. Effect of water vapor on the high-temperature oxidation of pure Ni [J]. Oxid. Met., 2012, 78: 51
|
77 |
Hamdani F, Abe H, Ter-Ovanessian B, et al. Effect of chromium content on the oxidation behavior of Ni-Cr model alloys in superheated steam [J]. Metall. Mater. Trans., 2015, 46A: 2285
|
78 |
Jiang C Y, Zhang J Q, Young D J. The effect of water vapor on NiO formation by Ni-Cr alloys at 650oC (HTCPM focus issue, FNS-111) [J]. Oxid. Met., 2021, 96: 57
|
79 |
Chen J R, Jiang C Y, Zhang J Q. Corrosion behaviors of Ni-Cr alloys in O2, H2O and H2O + O2 gases at 700oC and the effect of temperature [J]. High Temp. Corros. Mater., 2023, 100: 775
|
80 |
Anghel C, Hörnlund E, Hultquist G, et al. Gas phase analysis of CO interactions with solid surfaces at high temperatures [J]. Appl. Surf. Sci., 2004, 233: 392
|
81 |
Galerie A, Wouters Y, Caillet M. The kinetic behaviour of metals in water vapour at high temperatures: Can general rules be proposed? [J]. Mater. Sci. Forum, 2001, 369-372: 231
|
82 |
Zurek J, Young D J, Essuman E, et al. Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases [J]. Mater. Sci. Eng., 2008, A477: 259
|
83 |
Henry S, Mougin J, Wouters Y, et al. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres [J]. Mater. High Temp., 2000, 17: 231
|
84 |
Michalik M, Hänsel M, Zurek J, et al. Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low pO2-environments at 1000 and 1050oC [J]. Mater. High Temp., 2005, 22: 213
|
85 |
Simon D, Gorr B, Hänsel M, et al. Effect of in-situ gas changes on thermally grown chromia scales formed on Ni-25Cr alloy at 1000oC in atmospheres with and without water vapour [J]. Mater. High Temp., 2015, 32: 238
|
86 |
Galerie A, Petit J P, Wouters Y, et al. Water vapour effects on the oxidation of chromia-forming alloys [J]. Mater. Sci. Forum, 2011, 696: 200
|
87 |
Mrowec S, Przybylski K. Transport properties of sulfide scales and sulfidation of metals and alloys [J]. Oxid. Met., 1985, 23: 107
|
88 |
Huczkowski P, Young D J, Olszewski T, et al. Effect of sulphur on the oxidation behaviour of possible construction materials for heat exchangers in oxyfuel plants in the temperature range 550-700oC [J]. Oxid. Met., 2018, 89: 651
|
89 |
Huczkowski P, Najima S, Chyrkin A, et al. Corrosion behavior of candidate heat exchanger materials in oxidizing and reducing gases relevant to oxyfuel power plants [J]. Mater. High Temp., 2018, 35: 275
|
90 |
Huczkowski P, Chyrkin A, Singheiser L, et al. Corrosion behavior of candidate heat exchanger materials in oxidizing and reducing gases, relevant to oxyfuel combustion [A]. Corrosion 2016 [C]. Vancouver: NACE International, 2016: 7391
|
91 |
Pettit F. Hot corrosion of metals and alloys [J]. Oxid. Met., 2011, 76: 1
|
92 |
Gheno T, Gleeson B. On the hot corrosion of nickel at 700oC [J]. Oxid. Met., 2015, 84: 567
|
93 |
Lutz B S, Holcomb G R, Meier G H. Determination of the initiation and propagation mechanism of fireside corrosion [J]. Oxid. Met., 2015, 84: 353
|
94 |
Grégoire B, Montero X, Galetz M C, et al. Mechanisms of hot corrosion of pure nickel at 700oC: Influence of testing conditions [J]. Corros. Sci., 2018, 141: 211
|
95 |
Hu S S, Finklea H, Liu X B. A review on molten sulfate salts induced hot corrosion [J]. J. Mater. Sci. Technol., 2021, 90: 243
doi: 10.1016/j.jmst.2021.03.013
|
96 |
Meier G H. Invited review paper in commemoration of over 50 years of oxidation of metals: Current aspects of deposit-induced corrosion [J]. Oxid. Met., 2022, 98: 1
|
97 |
Castello P, Guttmann V, Farr N, et al. Laboratory-simulated fuel-ash corrosion of superheater tubes in coal-fired ultra-supercritical-boilers [J]. Mater. Corros., 2000, 51: 786
|
98 |
Hussain T, Syed A U, Simms N J. Fireside corrosion of superheater materials in coal/biomass co-fired advanced power plants [J]. Oxid. Met., 2013, 80: 529
|
99 |
Liu G M, Yang H C, Liang Q, et al. Corrosion behavior of the Ni-Cr-Fe base superalloy GH984G in a synthetic coal ash and flue gas environment [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 863
|
100 |
Hari P R, Arivazhagan N, Rao M N, et al. Hot corrosion studies on alloy 617 OCC in the context of its use in advanced ultra-supercritical (A-USC) power plants [J]. Trans. Indian Inst. Met., 2017, 70: 775
|
101 |
Stein-Brzozowska G, Flórez D M, Maier J, et al. Nickel-base superalloys for ultra-supercritical coal-fired power plants: Fireside corrosion. Laboratory studies and power plant exposures [J]. Fuel, 2013, 108: 521
|
102 |
Sha C H, Yang L M, Cairney J M, et al. Sulphur diffusion through a growing chromia scale and effects of water vapour [J]. Corros. Sci., 2023, 222: 111410
|
103 |
Yu C, Zhang J Q, Young D J. Corrosion behaviour of Fe-Cr-(Mn, Si) ferritic alloys in wet and dry CO2-SO2 atmospheres at 650oC [J]. Oxid. Met., 2018, 90: 97
|
104 |
Othman N K, Zhang J Q, Young D J. Temperature and water vapour effects on the cyclic oxidation behaviour of Fe-Cr alloys [J]. Corros. Sci., 2010, 52: 2827
|
105 |
Sánchez L, Hierro M P, Pérez F J. Effect of chromium content on the oxidation behaviour of ferritic steels for applications in steam atmospheres at high temperatures [J]. Oxid. Met., 2009, 71: 173
|
106 |
Xie Y, Du L X, Liang J J, et al. High temperature oxidation behavior of a novel γ′-strengthened CoNi-base superalloy [J]. High Temp. Corros. Mater., 2024, 101: 211
|
107 |
Pint B A, Thomson J K. Effect of oxy-firing on corrosion rates at 600-800oC [A]. Corrosion 2013 [C]. Orlando: NACE International, 2013: 2171
|
108 |
Pint B A. Simulated fireside corrosion of Ni-base alloys in oxy-fired conditions at 700-800oC [A]. ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries [C]. Seattle: ASME, 2014: 176
|
109 |
Hussain T, Syed A U, Simms N J. Trends in fireside corrosion damage to superheaters in air and oxy-firing of coal/biomass [J]. Fuel, 2013, 113: 787
|
110 |
Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review [J]. Prog. Mater. Sci., 2008, 53: 775
|
111 |
Raynaud G M, Rapp R A. In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals [J]. Oxid. Met., 1984, 21: 89
|
112 |
Larsson K, Björkman H, Hjort K. Role of water and oxygen in wet and dry oxidation of diamond [J]. J. Appl. Phys., 2001, 90: 1026
|
113 |
Lu J T, Yang Z, Li Y, et al. Effect of alloying chemistry on fireside corrosion behavior of Ni-Fe-based superalloy for ultra-supercritical boiler applications [J]. Oxid. Met., 2018, 89: 609
|
114 |
Xu Y X, Lu J T, Yang X W, et al. Effect and role of alloyed Nb on the air oxidation behaviour of Ni-Cr-Fe alloys at 1000oC [J]. Corros. Sci., 2017, 127: 10
|
115 |
Xie Y, Zhang J Q, Young D J, et al. Effect of Fe on corrosion of Ni-20Cr and Ni-30Cr alloys in wet CO2 gas at 650 and 700oC [J]. Corros. Sci., 2019, 154: 129
|
116 |
Xie Y, Liang T, Zhang J Q, et al. Effects of Fe on oxidation of Ni-20Cr and Ni-30Cr alloys at 800oC in dry CO2 gas [J]. Corros. Sci., 2020, 173: 108777
|
117 |
Xie Y, Zhang J Q, Young D J. Effects of Fe on oxidation of Ni-20Cr and Ni-30Cr alloys at 800oC in wet CO2 gas [J]. Oxid. Met., 2020, 94: 219
|
118 |
Million B, Růžičková J, Vřešťál J. Diffusion in Fe-Ni-Cr alloys with an F.C.C. lattice [J]. Mater. Sci. Eng., 1985, 72: 85
|
119 |
Duh J G, Dayananda M A. Interdiffusion in Fe-Ni-Cr alloys at 1100oC [J]. Defect Diffus. Forum, 1991, 39: 1
|
120 |
Xu Y X, Lu J T, Huang J Y, et al. Impact of iron and chromium on coal ash corrosion behavior of Ni-Cr-Co based alloy for advanced ultra-supercritical power plants [J]. Corrosion, 2018, 74: 1446
|
121 |
Colwell J A, Rapp R A. Reactions of Fe-Cr and Ni-Cr alloys in CO/CO2 gases at 850 and 950oC [J]. Metall. Trans., 1986, 17A: 1065
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|