Please wait a minute...
金属学报  2023, Vol. 59 Issue (5): 599-610    DOI: 10.11900/0412.1961.2021.00282
  本期目录 | 过刊浏览 |
喷射成形M3高速钢偏析成因及凝固机理
刘继浩1,2, 周健1(), 武会宾2, 马党参1, 徐辉霞3, 马志俊3
1钢铁研究总院 特殊钢研究所 北京 100081
2北京科技大学 钢铁共性技术协同创新中心 北京 100083
3天工爱和特钢有限公司 丹阳 212312
Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel
LIU Jihao1,2, ZHOU Jian1(), WU Huibin2, MA Dangshen1, XU Huixia3, MA Zhijun3
1Institute for Special Steels, Center Iron and Steel Research Institute, Beijing 100081, China
2Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
3Tiangong Aihe Special Steel Co., Danyang 212312, China
引用本文:

刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
Jihao LIU, Jian ZHOU, Huibin WU, Dangshen MA, Huixia XU, Zhijun MA. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. Acta Metall Sin, 2023, 59(5): 599-610.

全文: PDF(6787 KB)   HTML
摘要: 

采用喷射成形工艺制备直径250 mm大截面M3型高速钢,利用电火花直读光谱仪、金属原位分析仪、XRD、OM、SEM等手段,研究样坯特殊偏析形貌位置处合金元素分布和微观组织特征。结果表明,腐蚀后样坯低倍组织中存在2种偏析形貌:锭型偏析与环状偏析。锭型偏析区域内富集C及溶质元素;环状偏析区域主要富集C及Mo元素,较锭型偏析程度轻。由样坯边部至心部,碳化物形貌由条状向块状、鱼骨状转变;宏观偏析区域内碳化物偏析严重。基于实验结果,讨论了喷射成形工艺糊状区的组织变化及锭型偏析和环状偏析的形成,认为沉积阶段缓慢的冷却速率是出现上述结果的根本原因。因此,在利用喷射成形工艺制备大截面材料时,不应简单考虑为一种快速凝固技术。

关键词 喷射成形高速钢偏析形貌碳化物形貌凝固特征    
Abstract

Spray forming of various steels and iron-based alloys has been investigated since the 1960s. The microstructure and properties of spray-formed steels are superior to those of cast material, typically resembling those of equivalent powder metallurgy steels. While the wight of the deposits produced in pilot-scale plants is typically less than 100 kg, in some cases, industrial plants are capable of producing preforms that weigh up to several tons. However, in actual industrial production processes, segregation can easily appear in the product structure, especially in large-scale high-speed steel. In this work, M3 high-speed steels with a 250 mm diameter after forging were prepared through spray forming to study their cross-section segregation morphology. An arc-spark direct reading spectrometer, an original position analyzer for metals, OM, SEM, and EDS were used to analyze the distribution of alloy elements and microstructure characteristics of the different parts of a cross-section area. The results show two segregation morphologies in the cross-section of spray-formed M3 high-speed steel: ingot segregation and ring segregation. Carbon and alloy elements are enriched in the ingot segregation, whereas carbon and molybdenum are mainly enriched in the ring segregation, where the degree of segregation is less than that of the ingot segregation. From edge to center, the morphology of carbide changes from plate to massive. In the ring segregation area, there were two morphologies of carbide: one is M6C-wrapped MC composite carbide of the network distribution and the other M6C and MC both nucleating at the carbide/matrix interface of the composite carbide. In the ingot segregation area, carbides were mainly distributed independently of massive M6C and MC, with severe carbide segregation in the macrostructure. On the basis of the above experimental results, the solidification and microstructural evolution of spray forming were discussed, and the slow cooling rate in the deposition stage was the fundamental reason for the above experimental results. It is believed that spray forming loses rapid solidification characteristics in the deposition stage when preparing large-scale products.

Key wordsspray-formed high-speed steel    segregation morphology    morphology of carbide    solidification characteristic
收稿日期: 2021-07-08     
ZTFLH:  TG142.7  
作者简介: 刘继浩,男,1992年生,博士生
图1  喷射成形工艺设备示意图
图2  喷射成形M3高速钢低倍组织形貌及成分测试和组织分析取样示意图
图3  喷射成形M3高速钢(1#试样)成分曲线
图4  锭型偏析条纹形貌的OM像和元素分布(2#试样)
图5  环状偏析条纹形貌的OM像和元素分布(3#试样)
图6  4#~6#试样的XRD谱
图7  6#试样环状偏析区域与正常区域显微组织的OM像
图8  6#试样碳化物形貌的SEM像
PositionWMoCrVFeCarbide
123.4923.506.0338.508.48MC
235.3230.003.383.4027.90M6C
342.5334.735.2813.204.26M2C
431.0025.006.004.5033.50M6C
522.2017.908.3041.809.80MC
634.8829.284.112.8328.90M6C
722.8323.625.0144.803.74MC
表1  图8中1~7处的EDS分析结果 (mass fraction / %)
图9  5#锭型偏析试样及4#心部试样的显微组织
PositionWMoCrVFeCarbide
137.9826.903.772.2629.09M6C
238.6228.403.373.0126.60M6C
334.8428.473.443.4129.84M6C
422.8416.423.2254.902.62MC
表2  图9中1~4处的EDS分析结果 (mass fraction / %)
图10  喷射成形工艺凝固特征
1 Anon. Spray deposition and metal atomisation conference—SDMA 2003[J]. Powder Metall., 2003, 46: 110
doi: 10.1179/003258903767764661
2 Singer A R E. Metal matrix composites made by spray forming[J]. Mater. Sci. Eng., 1991, A135: 13
3 Lawley A, Leatham A G. Spray forming commercial products: Principles and practice[J]. Mater. Sci. Forum, 1998, 299-300: 407
doi: 10.4028/www.scientific.net/MSF.299-300
4 Lavernia E J, Grant N J. Spray deposition of metals: A review[J]. Mater. Sci. Eng., 1988, 98: 381
5 Yang M S, Zhong X Y. Metal spray deposition forming principles and application[J]. J. Baotou Univ. Iron Steel Technol., 2000, 19: 175
5 杨卯生, 钟雪友. 金属喷射成形原理及其应用[J]. 包头钢铁学院学报, 2000, 19: 175
6 Schulz A, Matthaei-Schulz E, Spangel S, et al. Analysis of spray formed tool steels[J]. Materialwiss. Werkst., 2003, 34: 478
doi: 10.1002/mawe.200390096
7 Mesquita R A, Barbosa C A. High-speed steels produced by conventional casting, spray forming and powder metallurgy[J]. Mater. Sci. Forum, 2005, 498-499: 244
doi: 10.4028/www.scientific.net/MSF.498-499
8 Schruff I, Schüler V, Spiegelhauer C. Advanced tool steels produced via spray forming[A]. Proceedings of the 6th International Tooling Conference [C]. Sweden, 2002: 1159
9 Schulz A, Uhlenwinkel V, Escher C, et al. Opportunities and challenges of spray forming high-alloyed steels[J]. Mater. Sci. Eng., 2008, A477: 69
10 Mathur P, Apelian D, Lawley A. Analysis of the spray deposition process[J]. Acta Metall., 1989, 37: 429
doi: 10.1016/0001-6160(89)90227-7
11 Liang X, Earthman J C, Lavernia E J. On the mechanism of grain formation during spray atomization and deposition[J]. Acta Metall. Mater., 1992, 40: 3003
doi: 10.1016/0956-7151(92)90464-P
12 Henein H. Why is spray forming a rapid solidification process?[J]. Materialwiss. Werkst., 2010, 41: 555
doi: 10.1002/mawe.201000642
13 Zepon G, Ellendt N, Uhlenwinkel V, et al. Solidification sequence of spray-formed steels[J]. Metall. Mater. Trans., 2016, 47A: 842
14 Grant P S. Solidification in spray forming[J]. Metall. Mater. Trans., 2007, 38A: 1520
15 Soyama J, Zepon G, Lopes T P, et al. Microstructure formation and abrasive wear resistance of a boron-modified superduplex stainless steel produced by spray forming[J]. J. Mater. Res., 2016, 31: 2987
doi: 10.1557/jmr.2016.323
16 Zepon G, Fernandes J F M, Otani L B, et al. Stable eutectic formation in spray-formed cast iron[J]. Metall. Mater. Trans., 2020, 51A: 798
17 Wolf W, Silva L P M E, Zepon G, et al. Single step fabrication by spray forming of large volume Al-based composites reinforced with quasicrystals[J]. Scr. Mater., 2020, 181: 86
doi: 10.1016/j.scriptamat.2020.02.018
18 Wang W M, Wu G, Chen Q, et al. Metallographic examination of powder metallurgical high speed steel and injection forming high speed steel[J]. Tool Eng., 2015, 49(7): 52
18 王为民, 伍 钢, 陈 谦, 等. 粉末冶金高速钢和喷射成形高速钢的金相检验[J]. 工具技术, 2015, 49(7): 52
19 Mingard K P, Cantor B, Palmer I G, et al. Macro-segregation in aluminium alloy sprayformed billets[J]. Acta Mater., 2000, 48: 2435
doi: 10.1016/S1359-6454(00)00075-6
20 Zhang J G, Shi H S, Sun D S. Research in spray forming technology and its applications in metallurgy[J]. J. Mater. Process. Technol., 2003, 138: 357
doi: 10.1016/S0924-0136(03)00098-0
21 Ghomashchi M R, Sellars C M. Microstructural changes in as-cast M2 grade high speed steel during hot forging[J]. Metall. Mater. Trans., 1993, 24A: 2171
22 Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel[J] J. Iron Steel Res. Int., 2017, 24: 43
doi: 10.1016/S1006-706X(17)30007-9
23 Zhou X F, Fang F, Li F, et al. Morphology and microstructure of M2C carbide formed at different cooling rates in AISI M2 high speed steel[J]. J. Mater. Sci., 2011, 46: 1196
doi: 10.1007/s10853-010-4895-4
24 Zhou X F, Fang F, Jiang J Q, et al. Study on decomposition behaviour of M2C eutectic carbide in high speed steel[J]. Mater. Sci. Technol., 2012, 28: 1499
doi: 10.1179/1743284712Y.0000000081
25 Lee E S, Park W J, Baik K H, et al. Different carbide types and their effect on bend properties of a spray-formed high speed steel[J]. Scr. Mater., 1998, 39: 1133
doi: 10.1016/S1359-6462(98)00270-X
26 Yuan H. Three-dimensional mathematical shape and heat transfer model of spray-formed billet[D]. Shanghai: Shanghai Jiao Tong University, 2014
26 袁 浩. 喷射成形锭坯的三维成形与传热数值模拟[D]. 上海: 上海交通大学, 2014
27 Lee E S, Park W J, Jung J Y, et al. Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel[J]. Metall. Mater. Trans., 1998, 29A: 1395
28 Lu L. Study on spray-formed Nb-containing M3 high speed steel: Microstructures and properties optimization, application[D]. Beijing: University of Science and Technology Beijing, 2016
28 卢 林. 喷射成形含铌M3型高速钢组织性能优化与应用研究[D]. 北京: 北京科技大学, 2016
29 Liu B W. Optimization of alloy composition and properties of high speed steel fabricated by powder metallurgy[D]. Beijing: University of Science and Technology Beijing, 2020
29 刘博文. 粉末冶金高速钢合金成分及性能优化[D]. 北京: 北京科技大学, 2020
30 Wang H B. The evolution of carbides in spray-formed Nb-containing M3 high speed steels and corresponding mechanisms[D]. Beijing: University of Science and Technology Beijing, 2015
30 王和斌. 喷射成形M3型高速钢碳化物演变规律及机理研究[D]. 北京: 北京科技大学, 2015
31 Chen Y Q. Study on the control of carbon macro-segregation for large round bloom during continuous casting[D]. Beijing: Central Iron and Steel Research Institute, 2019
31 陈远清. 连铸大圆坯宏观碳偏析的控制研究[D]. 北京: 钢铁研究总院, 2019
32 Xu W Y. The formation and control of carbon segregation of gear steel in the bloom casting process[D]. Beijing: Central Iron and Steel Research Institute, 2012
32 许伟阳. 连铸齿轮钢矩形坯碳“锭型”偏析的形成与控制[D]. 北京: 钢铁研究总院, 2012
33 Wang X H, Ward R M, Jacobs M H, et al. Effect of variation in process parameters on the formation of freckle in Inconel 718 by vacuum arc remelting[J]. Metall. Mater. Trans., 2008, 39A: 2981
[1] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[2] 谢尘, 吴晓春, 闵娜, 沈贇靓. 3DAP研究高碳高合金钢深冷处理过程的C偏聚行为[J]. 金属学报, 2015, 51(3): 325-332.
[3] 赵海东; 柳百成; 房贵如; 熊守美 . 球墨铸铁中白口共晶形成的数值模拟[J]. 金属学报, 2001, 37(10): 1107-1111 .