|
|
喷射成形M3高速钢偏析成因及凝固机理 |
刘继浩1,2, 周健1( ), 武会宾2, 马党参1, 徐辉霞3, 马志俊3 |
1钢铁研究总院 特殊钢研究所 北京 100081 2北京科技大学 钢铁共性技术协同创新中心 北京 100083 3天工爱和特钢有限公司 丹阳 212312 |
|
Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel |
LIU Jihao1,2, ZHOU Jian1( ), WU Huibin2, MA Dangshen1, XU Huixia3, MA Zhijun3 |
1Institute for Special Steels, Center Iron and Steel Research Institute, Beijing 100081, China 2Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China 3Tiangong Aihe Special Steel Co., Danyang 212312, China |
引用本文:
刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
Jihao LIU,
Jian ZHOU,
Huibin WU,
Dangshen MA,
Huixia XU,
Zhijun MA.
Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. Acta Metall Sin, 2023, 59(5): 599-610.
1 |
Anon. Spray deposition and metal atomisation conference—SDMA 2003[J]. Powder Metall., 2003, 46: 110
doi: 10.1179/003258903767764661
|
2 |
Singer A R E. Metal matrix composites made by spray forming[J]. Mater. Sci. Eng., 1991, A135: 13
|
3 |
Lawley A, Leatham A G. Spray forming commercial products: Principles and practice[J]. Mater. Sci. Forum, 1998, 299-300: 407
doi: 10.4028/www.scientific.net/MSF.299-300
|
4 |
Lavernia E J, Grant N J. Spray deposition of metals: A review[J]. Mater. Sci. Eng., 1988, 98: 381
|
5 |
Yang M S, Zhong X Y. Metal spray deposition forming principles and application[J]. J. Baotou Univ. Iron Steel Technol., 2000, 19: 175
|
5 |
杨卯生, 钟雪友. 金属喷射成形原理及其应用[J]. 包头钢铁学院学报, 2000, 19: 175
|
6 |
Schulz A, Matthaei-Schulz E, Spangel S, et al. Analysis of spray formed tool steels[J]. Materialwiss. Werkst., 2003, 34: 478
doi: 10.1002/mawe.200390096
|
7 |
Mesquita R A, Barbosa C A. High-speed steels produced by conventional casting, spray forming and powder metallurgy[J]. Mater. Sci. Forum, 2005, 498-499: 244
doi: 10.4028/www.scientific.net/MSF.498-499
|
8 |
Schruff I, Schüler V, Spiegelhauer C. Advanced tool steels produced via spray forming[A]. Proceedings of the 6th International Tooling Conference [C]. Sweden, 2002: 1159
|
9 |
Schulz A, Uhlenwinkel V, Escher C, et al. Opportunities and challenges of spray forming high-alloyed steels[J]. Mater. Sci. Eng., 2008, A477: 69
|
10 |
Mathur P, Apelian D, Lawley A. Analysis of the spray deposition process[J]. Acta Metall., 1989, 37: 429
doi: 10.1016/0001-6160(89)90227-7
|
11 |
Liang X, Earthman J C, Lavernia E J. On the mechanism of grain formation during spray atomization and deposition[J]. Acta Metall. Mater., 1992, 40: 3003
doi: 10.1016/0956-7151(92)90464-P
|
12 |
Henein H. Why is spray forming a rapid solidification process?[J]. Materialwiss. Werkst., 2010, 41: 555
doi: 10.1002/mawe.201000642
|
13 |
Zepon G, Ellendt N, Uhlenwinkel V, et al. Solidification sequence of spray-formed steels[J]. Metall. Mater. Trans., 2016, 47A: 842
|
14 |
Grant P S. Solidification in spray forming[J]. Metall. Mater. Trans., 2007, 38A: 1520
|
15 |
Soyama J, Zepon G, Lopes T P, et al. Microstructure formation and abrasive wear resistance of a boron-modified superduplex stainless steel produced by spray forming[J]. J. Mater. Res., 2016, 31: 2987
doi: 10.1557/jmr.2016.323
|
16 |
Zepon G, Fernandes J F M, Otani L B, et al. Stable eutectic formation in spray-formed cast iron[J]. Metall. Mater. Trans., 2020, 51A: 798
|
17 |
Wolf W, Silva L P M E, Zepon G, et al. Single step fabrication by spray forming of large volume Al-based composites reinforced with quasicrystals[J]. Scr. Mater., 2020, 181: 86
doi: 10.1016/j.scriptamat.2020.02.018
|
18 |
Wang W M, Wu G, Chen Q, et al. Metallographic examination of powder metallurgical high speed steel and injection forming high speed steel[J]. Tool Eng., 2015, 49(7): 52
|
18 |
王为民, 伍 钢, 陈 谦, 等. 粉末冶金高速钢和喷射成形高速钢的金相检验[J]. 工具技术, 2015, 49(7): 52
|
19 |
Mingard K P, Cantor B, Palmer I G, et al. Macro-segregation in aluminium alloy sprayformed billets[J]. Acta Mater., 2000, 48: 2435
doi: 10.1016/S1359-6454(00)00075-6
|
20 |
Zhang J G, Shi H S, Sun D S. Research in spray forming technology and its applications in metallurgy[J]. J. Mater. Process. Technol., 2003, 138: 357
doi: 10.1016/S0924-0136(03)00098-0
|
21 |
Ghomashchi M R, Sellars C M. Microstructural changes in as-cast M2 grade high speed steel during hot forging[J]. Metall. Mater. Trans., 1993, 24A: 2171
|
22 |
Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel[J] J. Iron Steel Res. Int., 2017, 24: 43
doi: 10.1016/S1006-706X(17)30007-9
|
23 |
Zhou X F, Fang F, Li F, et al. Morphology and microstructure of M2C carbide formed at different cooling rates in AISI M2 high speed steel[J]. J. Mater. Sci., 2011, 46: 1196
doi: 10.1007/s10853-010-4895-4
|
24 |
Zhou X F, Fang F, Jiang J Q, et al. Study on decomposition behaviour of M2C eutectic carbide in high speed steel[J]. Mater. Sci. Technol., 2012, 28: 1499
doi: 10.1179/1743284712Y.0000000081
|
25 |
Lee E S, Park W J, Baik K H, et al. Different carbide types and their effect on bend properties of a spray-formed high speed steel[J]. Scr. Mater., 1998, 39: 1133
doi: 10.1016/S1359-6462(98)00270-X
|
26 |
Yuan H. Three-dimensional mathematical shape and heat transfer model of spray-formed billet[D]. Shanghai: Shanghai Jiao Tong University, 2014
|
26 |
袁 浩. 喷射成形锭坯的三维成形与传热数值模拟[D]. 上海: 上海交通大学, 2014
|
27 |
Lee E S, Park W J, Jung J Y, et al. Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel[J]. Metall. Mater. Trans., 1998, 29A: 1395
|
28 |
Lu L. Study on spray-formed Nb-containing M3 high speed steel: Microstructures and properties optimization, application[D]. Beijing: University of Science and Technology Beijing, 2016
|
28 |
卢 林. 喷射成形含铌M3型高速钢组织性能优化与应用研究[D]. 北京: 北京科技大学, 2016
|
29 |
Liu B W. Optimization of alloy composition and properties of high speed steel fabricated by powder metallurgy[D]. Beijing: University of Science and Technology Beijing, 2020
|
29 |
刘博文. 粉末冶金高速钢合金成分及性能优化[D]. 北京: 北京科技大学, 2020
|
30 |
Wang H B. The evolution of carbides in spray-formed Nb-containing M3 high speed steels and corresponding mechanisms[D]. Beijing: University of Science and Technology Beijing, 2015
|
30 |
王和斌. 喷射成形M3型高速钢碳化物演变规律及机理研究[D]. 北京: 北京科技大学, 2015
|
31 |
Chen Y Q. Study on the control of carbon macro-segregation for large round bloom during continuous casting[D]. Beijing: Central Iron and Steel Research Institute, 2019
|
31 |
陈远清. 连铸大圆坯宏观碳偏析的控制研究[D]. 北京: 钢铁研究总院, 2019
|
32 |
Xu W Y. The formation and control of carbon segregation of gear steel in the bloom casting process[D]. Beijing: Central Iron and Steel Research Institute, 2012
|
32 |
许伟阳. 连铸齿轮钢矩形坯碳“锭型”偏析的形成与控制[D]. 北京: 钢铁研究总院, 2012
|
33 |
Wang X H, Ward R M, Jacobs M H, et al. Effect of variation in process parameters on the formation of freckle in Inconel 718 by vacuum arc remelting[J]. Metall. Mater. Trans., 2008, 39A: 2981
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|