|
|
纳米多孔金属表面结构与成分的三维电子层析表征 |
段慧超1,2, 王春阳1, 叶恒强1,3, 杜奎1( ) |
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2.中国科学技术大学 材料科学与工程学院 沈阳 110016 3.季华实验室 佛山 528000 |
|
Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces |
DUAN Huichao1,2, WANG Chunyang1, YE Hengqiang1,3, DU Kui1( ) |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.Ji Hua Laboratory, Foshan 528000, China |
引用本文:
段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
Huichao DUAN,
Chunyang WANG,
Hengqiang YE,
Kui DU.
Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. Acta Metall Sin, 2023, 59(10): 1291-1298.
1 |
Wittstock A, Wichmann A, Biener J, et al. Nanoporous gold: A new gold catalyst with tunable properties [J]. Faraday Discuss., 2011, 152: 87
pmid: 22455040
|
2 |
Zhang X M, Ding Y. Unsupported nanoporous gold for heterogeneous catalysis [J]. Catal. Sci. Technol., 2013, 3: 2862
doi: 10.1039/c3cy00241a
|
3 |
Jin H J, Wang X L, Parida S, et al. Nanoporous Au-Pt alloys as large strain electrochemical actuators [J]. Nano Lett., 2010, 10: 187
doi: 10.1021/nl903262b
|
4 |
Weissmuller J, Viswanath R N, Kramer D, et al. Charge-induced reversible strain in a metal [J]. Science, 2003, 300: 312
pmid: 12690195
|
5 |
Wittstock A, Biener J, Bäumer M. Nanoporous gold: A new material for catalytic and sensor applications [J]. Phys. Chem. Chem. Phys., 2010, 12: 12919
doi: 10.1039/c0cp00757a
pmid: 20820589
|
6 |
Huang J F, Sun I W. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self‐assembly of L‐cysteine monolayers [J]. Adv. Funct. Mater., 2005, 15: 989
doi: 10.1002/(ISSN)1616-3028
|
7 |
Yu Y, Gu L, Lang X Y, et al. Li Storage in 3D nanoporous Au‐supported nanocrystalline tin [J]. Adv. Mater., 2011, 23: 2443
doi: 10.1002/adma.201004331
|
8 |
Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450
doi: 10.1038/35068529
|
9 |
Pickering H W. Characteristic features of alloy polarization curves [J]. Corros. Sci., 1983, 23: 1107
doi: 10.1016/0010-938X(83)90092-6
|
10 |
Gao P P, Zhu Z J, Ye X L, et al. Defects evolution in nanoporous Au (Pt) during dealloying [J]. Scr. Mater., 2016, 113: 68
doi: 10.1016/j.scriptamat.2015.10.006
|
11 |
Ye X L, Jin H J. Corrosion‐induced strengthening: Development of high‐strength nanoporous metals [J]. Adv. Eng. Mater., 2016, 18: 1050
doi: 10.1002/adem.v18.6
|
12 |
Weissmüller J, Newman R C, Jin H J, et al. Nanoporous metals by alloy corrosion: Formation and mechanical properties [J]. MRS Bull., 2009, 34: 577
doi: 10.1557/mrs2009.157
|
13 |
Molares M E T, Balogh A G, Cornelius T W, et al. Fragmentation of nanowires driven by Rayleigh instability [J]. Appl. Phys. Lett., 2004, 85: 5337
doi: 10.1063/1.1826237
|
14 |
Qian L H, Chen M W. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation [J]. Appl. Phys. Lett., 2007, 91: 083105
|
15 |
Jin H J, Parida S, Kramer D, et al. Sign-inverted surface stress-charge response in nanoporous gold [J]. Surf. Sci., 2008, 602: 3588
doi: 10.1016/j.susc.2008.09.038
|
16 |
Newman R C. A theory of secondary alloying effects on corrosion and stress-corrosion cracking [J]. Corros. Sci., 1992, 33: 1653
doi: 10.1016/0010-938X(92)90041-Z
|
17 |
Snyder J, Asanithi P, Dalton A B, et al. Stabilized nanoporous metals by dealloying ternary alloy precursors [J]. Adv. Mater., 2008, 20: 4883
doi: 10.1002/adma.v20:24
|
18 |
Erlebacher J. An atomistic description of dealloying: Porosity evolution, the critical potential, and rate-limiting behavior [J]. J. Electrochem. Soc., 2004, 151: C614
doi: 10.1149/1.1784820
|
19 |
Vega A A, Newman R C. Nanoporous metals fabricated through electrochemical dealloying of Ag-Au-Pt with systematic variation of Au: Pt ratio [J]. J. Electrochem. Soc., 2013, 161: C1
doi: 10.1149/2.003401jes
|
20 |
Vega A A, Newman R C. Beneficial effects of adsorbate-induced surface segregation of Pt in nanoporous metals fabricated by dealloying of Ag-Au-Pt alloys [J]. J. Electrochem. Soc., 2014, 161: C11
doi: 10.1149/2.014401jes
|
21 |
Vega A A, Newman R C. Methanol electro-oxidation on nanoporous metals formed by dealloying of Ag-Au-Pt alloys [J]. J. Appl. Electrochem., 2016, 46: 995
doi: 10.1007/s10800-016-0978-5
|
22 |
El-Zoka A, Langelier B, Korinek A, et al. Nanoscale mechanism of the stabilization of nanoporous gold by alloyed platinum [J]. Nanoscale, 2018, 10: 4904
doi: 10.1039/c7nr08206a
pmid: 29480291
|
23 |
Cai Y, Ma C, Zhu Y M, et al. Low-coordination sites in oxygen-reduction electrocatalysis: Their roles and methods for removal [J]. Langmuir, 2011, 27: 8540
doi: 10.1021/la200753z
pmid: 21627139
|
24 |
Barreau M, Méthivier C, Sturel T, et al. In situ surface imaging: high temperature environmental SEM study of the surface changes during heat treatment of an Al-Si coated boron steel [J]. Mater. Charact., 2020, 163: 110266
doi: 10.1016/j.matchar.2020.110266
|
25 |
Luo Y, Jelic V, Chen G, et al. Nanoscale terahertz STM imaging of a metal surface [J]. Phys. Rev., 2020, 102B: 205417
|
26 |
Geagea E, Jeannoutot J, Féron M, et al. Collective radical oligomerisation induced by an STM tip on a silicon surface [J]. Nanoscale, 2021, 13: 349
doi: 10.1039/d0nr08291k
pmid: 33346311
|
27 |
Li T, Kasian O, Cherevko S, et al. Atomic-scale insights into surface species of electrocatalysts in three dimensions [J]. Nat. Catal., 2018, 1: 300
doi: 10.1038/s41929-018-0043-3
|
28 |
Nomoto K, Sugimoto H, Ceguerra A V, et al. 3D microstructure analysis of silicon-boron phosphide mixed nanocrystals [J]. Nanoscale, 2020, 12: 7256
doi: 10.1039/d0nr01023e
pmid: 32196060
|
29 |
Yu R, Chen W, Cheng Z Y, et al. Multishell intermetallic onions by symmetrical configuration of ordered domains [J]. Phys. Rev. Lett., 2010, 105: 225501
doi: 10.1103/PhysRevLett.105.225501
|
30 |
Yu R, Hu L H, Cheng Z Y, et al. Direct subangstrom measurement of surfaces of oxide particles [J]. Phys. Rev. Lett., 2010, 105: 226101
doi: 10.1103/PhysRevLett.105.226101
|
31 |
He M R, Yu R, Zhu J. Reversible wurtzite-tetragonal reconstruction in ZnO (10 1 ¯ 0) surfaces [J]. Angew. Chem. Int. Ed., 2012, 51:7744
doi: 10.1002/anie.201202598
|
32 |
Lu N, Du K, Lu L, et al. Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper [J]. Nat. Commun., 2015, 6: 7648
doi: 10.1038/ncomms8648
pmid: 26179409
|
33 |
Wang C Y, Du K, Song K P, et al. Size-dependent grain-boundary structure with improved conductive and mechanical stabilities in sub-10-nm gold crystals [J]. Phys. Rev. Lett., 2018, 120: 186102
doi: 10.1103/PhysRevLett.120.186102
|
34 |
Wang X L, Wang C Y, Chen C J, et al. Free-standing monatomic thick two-dimensional gold [J]. Nano Lett., 2019, 19: 4560
doi: 10.1021/acs.nanolett.9b01494
pmid: 31241953
|
35 |
Bals S, Casavola M, Van Huis M A, et al. Three-dimensional atomic imaging of colloidal core-shell nanocrystals [J]. Nano Lett., 2011, 11: 3420
doi: 10.1021/nl201826e
pmid: 21786766
|
36 |
Scott M C, Chen C C, Mecklenburg M, et al. Electron tomography at 2.4-ångström resolution [J]. Nature, 2012, 483: 444
doi: 10.1038/nature10934
|
37 |
Wang C Y, Duan H C, Chen C J, et al. Three-dimensional atomic structure of grain boundaries resolved by atomic-resolution electron tomography [J]. Matter, 2020, 3: 1999
doi: 10.1016/j.matt.2020.09.003
|
38 |
Wang C Y, Liu H Y, Duan H C, et al. 3D atomic imaging of low-coordinated active sites in solid-state dealloyed hierarchical nanoporous gold [J]. J. Mater. Chem., 2021, 9A: 25513
|
39 |
Tran R, Xu Z H, Radhakrishnan B, et al. Surface energies of elemental crystals [J]. Sci. Data, 2016, 3: 160080
doi: 10.1038/sdata.2016.80
|
40 |
Qi Z, Vainio U, Kornowski A, et al. Porous gold with a nested‐network architecture and ultrafine structure [J]. Adv. Funct. Mater., 2015, 25: 2530
doi: 10.1002/adfm.v25.17
|
41 |
Ye X L, Lu N, Li X J, et al. Primary and secondary dealloying of Au(Pt)-Ag: Structural and compositional evolutions, and volume shrinkage [J]. J. Electrochem. Soc., 2014, 161: C517
doi: 10.1149/2.0131412jes
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|