Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1291-1298    DOI: 10.11900/0412.1961.2022.00133
  研究论文 本期目录 | 过刊浏览 |
纳米多孔金属表面结构与成分的三维电子层析表征
段慧超1,2, 王春阳1, 叶恒强1,3, 杜奎1()
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
3.季华实验室 佛山 528000
Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces
DUAN Huichao1,2, WANG Chunyang1, YE Hengqiang1,3, DU Kui1()
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Ji Hua Laboratory, Foshan 528000, China
引用本文:

段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
Huichao DUAN, Chunyang WANG, Hengqiang YE, Kui DU. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. Acta Metall Sin, 2023, 59(10): 1291-1298.

全文: PDF(2008 KB)   HTML
摘要: 

结合扫描透射电子显微技术、电子层析技术及能量色散谱(EDS)成分的三维重构对纳米多孔Au和纳米多孔Au-Pt孔棱的表面结构和成分进行了分析。利用原子分辨率的电子层析技术分析了纳米多孔Au孔棱表面的原子结构,发现表面的缺陷可以分为2类,一类是{111}平台上的扭折和台阶,一类是表面凹坑。相比于扭折和台阶,表面凹坑会引入更多低配位位点。将原子级电子层析与EDS成分三维重构相结合,分析了Pt元素在孔棱表面的偏聚情况,证明了Pt在孔棱表面低配位位点的偏聚。

关键词 电子层析技术能量色散谱纳米多孔金属表面偏聚    
Abstract

Nanoporous metals have a porous structure with bicontinuous nanoscale voids and ligaments. Thus, nanoporous metals differ from their bulk counterparts in mechanical, physical, and chemical characteristics due to their unique ligament structure and high surface-to-volume ratio. The surface structure and chemistry of nanoporous metals play critical roles in their applications in catalysis, sensing, and other fields. The surfaces of nanoporous metals contain a substantial number of low-coordination sites, which are vital for improving their catalytic performance. Moreover, the addition of platinum to nanoporous gold has a massive impact on its catalytic and mechanical characteristics. High-resolution transmission electron microscopy (TEM) and high-resolution scanning transmission electron microscopy (STEM) are commonly used to study the atomic structure of crystals. However, since these techniques only provides two-dimensional projection images, it is usually hard or even impossible to directly and quantitatively resolve the three-dimensional (3D) structure of nanocrystals, especially their surface crystallography and coordination information. Compared to traditional TEM and STEM imaging technologies, electron tomography with atomic resolution provides a powerful means to resolve 3D atomic-resolution information of materials. In this work, the surface structure and chemical composition of nanoporous gold and nanoporous gold-platinum were analyzed using STEM, electron tomography, and three-dimensional reconstruction of energy dispersive spectroscopy (EDS) results. The atomic structure of the ligament surface was examined using electron tomography with atomic resolution. It was observed that, surface defects can be separated into two categories: kinks and steps on the {111} terrace, and dents and pits. Surface dents and pits introduce a greater number of low-coordination sites than kinks and steps. Furthermore, the segregation of Pt on the ligament surface was discovered by combining the atomic-resolution electron tomography with the 3D reconstruction of EDS results.

Key wordselectron tomography    energy dispersive spectroscopy    nanoporous matal    surface segregation
收稿日期: 2022-03-23     
ZTFLH:  TG146.3  
基金资助:国家自然科学基金项目(52171020);国家自然科学基金项目(91960202)
通讯作者: 杜 奎,kuidu@imr.ac.cn,主要从事结构材料形变与相变的定量电子显微学研究
Corresponding author: DU Kui, professor, Tel: (024)83970725, E-mail: kuidu@imr.ac.cn
作者简介: 段慧超,男,1992年生,博士生
图1  纳米多孔Au的孔棱和孔隙结构高角环形暗场(HAADF)像
图2  低倍下纳米多孔Au结构和成分的三维(3D)重构结果
图3  纳米多孔Au孔棱的原子分辨率电子层析3D重构及表面配位分析
图4  纳米多孔Au-Pt表面凹坑的原子级3D重构结果
图5  纳米多孔Au-Pt表面偏聚的3D分析
图6  表面Pt偏聚的3D探测尺寸
1 Wittstock A, Wichmann A, Biener J, et al. Nanoporous gold: A new gold catalyst with tunable properties [J]. Faraday Discuss., 2011, 152: 87
pmid: 22455040
2 Zhang X M, Ding Y. Unsupported nanoporous gold for heterogeneous catalysis [J]. Catal. Sci. Technol., 2013, 3: 2862
doi: 10.1039/c3cy00241a
3 Jin H J, Wang X L, Parida S, et al. Nanoporous Au-Pt alloys as large strain electrochemical actuators [J]. Nano Lett., 2010, 10: 187
doi: 10.1021/nl903262b
4 Weissmuller J, Viswanath R N, Kramer D, et al. Charge-induced reversible strain in a metal [J]. Science, 2003, 300: 312
pmid: 12690195
5 Wittstock A, Biener J, Bäumer M. Nanoporous gold: A new material for catalytic and sensor applications [J]. Phys. Chem. Chem. Phys., 2010, 12: 12919
doi: 10.1039/c0cp00757a pmid: 20820589
6 Huang J F, Sun I W. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self‐assembly of L‐cysteine monolayers [J]. Adv. Funct. Mater., 2005, 15: 989
doi: 10.1002/(ISSN)1616-3028
7 Yu Y, Gu L, Lang X Y, et al. Li Storage in 3D nanoporous Au‐supported nanocrystalline tin [J]. Adv. Mater., 2011, 23: 2443
doi: 10.1002/adma.201004331
8 Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450
doi: 10.1038/35068529
9 Pickering H W. Characteristic features of alloy polarization curves [J]. Corros. Sci., 1983, 23: 1107
doi: 10.1016/0010-938X(83)90092-6
10 Gao P P, Zhu Z J, Ye X L, et al. Defects evolution in nanoporous Au (Pt) during dealloying [J]. Scr. Mater., 2016, 113: 68
doi: 10.1016/j.scriptamat.2015.10.006
11 Ye X L, Jin H J. Corrosion‐induced strengthening: Development of high‐strength nanoporous metals [J]. Adv. Eng. Mater., 2016, 18: 1050
doi: 10.1002/adem.v18.6
12 Weissmüller J, Newman R C, Jin H J, et al. Nanoporous metals by alloy corrosion: Formation and mechanical properties [J]. MRS Bull., 2009, 34: 577
doi: 10.1557/mrs2009.157
13 Molares M E T, Balogh A G, Cornelius T W, et al. Fragmentation of nanowires driven by Rayleigh instability [J]. Appl. Phys. Lett., 2004, 85: 5337
doi: 10.1063/1.1826237
14 Qian L H, Chen M W. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation [J]. Appl. Phys. Lett., 2007, 91: 083105
15 Jin H J, Parida S, Kramer D, et al. Sign-inverted surface stress-charge response in nanoporous gold [J]. Surf. Sci., 2008, 602: 3588
doi: 10.1016/j.susc.2008.09.038
16 Newman R C. A theory of secondary alloying effects on corrosion and stress-corrosion cracking [J]. Corros. Sci., 1992, 33: 1653
doi: 10.1016/0010-938X(92)90041-Z
17 Snyder J, Asanithi P, Dalton A B, et al. Stabilized nanoporous metals by dealloying ternary alloy precursors [J]. Adv. Mater., 2008, 20: 4883
doi: 10.1002/adma.v20:24
18 Erlebacher J. An atomistic description of dealloying: Porosity evolution, the critical potential, and rate-limiting behavior [J]. J. Electrochem. Soc., 2004, 151: C614
doi: 10.1149/1.1784820
19 Vega A A, Newman R C. Nanoporous metals fabricated through electrochemical dealloying of Ag-Au-Pt with systematic variation of Au: Pt ratio [J]. J. Electrochem. Soc., 2013, 161: C1
doi: 10.1149/2.003401jes
20 Vega A A, Newman R C. Beneficial effects of adsorbate-induced surface segregation of Pt in nanoporous metals fabricated by dealloying of Ag-Au-Pt alloys [J]. J. Electrochem. Soc., 2014, 161: C11
doi: 10.1149/2.014401jes
21 Vega A A, Newman R C. Methanol electro-oxidation on nanoporous metals formed by dealloying of Ag-Au-Pt alloys [J]. J. Appl. Electrochem., 2016, 46: 995
doi: 10.1007/s10800-016-0978-5
22 El-Zoka A, Langelier B, Korinek A, et al. Nanoscale mechanism of the stabilization of nanoporous gold by alloyed platinum [J]. Nanoscale, 2018, 10: 4904
doi: 10.1039/c7nr08206a pmid: 29480291
23 Cai Y, Ma C, Zhu Y M, et al. Low-coordination sites in oxygen-reduction electrocatalysis: Their roles and methods for removal [J]. Langmuir, 2011, 27: 8540
doi: 10.1021/la200753z pmid: 21627139
24 Barreau M, Méthivier C, Sturel T, et al. In situ surface imaging: high temperature environmental SEM study of the surface changes during heat treatment of an Al-Si coated boron steel [J]. Mater. Charact., 2020, 163: 110266
doi: 10.1016/j.matchar.2020.110266
25 Luo Y, Jelic V, Chen G, et al. Nanoscale terahertz STM imaging of a metal surface [J]. Phys. Rev., 2020, 102B: 205417
26 Geagea E, Jeannoutot J, Féron M, et al. Collective radical oligomerisation induced by an STM tip on a silicon surface [J]. Nanoscale, 2021, 13: 349
doi: 10.1039/d0nr08291k pmid: 33346311
27 Li T, Kasian O, Cherevko S, et al. Atomic-scale insights into surface species of electrocatalysts in three dimensions [J]. Nat. Catal., 2018, 1: 300
doi: 10.1038/s41929-018-0043-3
28 Nomoto K, Sugimoto H, Ceguerra A V, et al. 3D microstructure analysis of silicon-boron phosphide mixed nanocrystals [J]. Nanoscale, 2020, 12: 7256
doi: 10.1039/d0nr01023e pmid: 32196060
29 Yu R, Chen W, Cheng Z Y, et al. Multishell intermetallic onions by symmetrical configuration of ordered domains [J]. Phys. Rev. Lett., 2010, 105: 225501
doi: 10.1103/PhysRevLett.105.225501
30 Yu R, Hu L H, Cheng Z Y, et al. Direct subangstrom measurement of surfaces of oxide particles [J]. Phys. Rev. Lett., 2010, 105: 226101
doi: 10.1103/PhysRevLett.105.226101
31 He M R, Yu R, Zhu J. Reversible wurtzite-tetragonal reconstruction in ZnO (10 1 ¯ 0) surfaces [J]. Angew. Chem. Int. Ed., 2012, 51:7744
doi: 10.1002/anie.201202598
32 Lu N, Du K, Lu L, et al. Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper [J]. Nat. Commun., 2015, 6: 7648
doi: 10.1038/ncomms8648 pmid: 26179409
33 Wang C Y, Du K, Song K P, et al. Size-dependent grain-boundary structure with improved conductive and mechanical stabilities in sub-10-nm gold crystals [J]. Phys. Rev. Lett., 2018, 120: 186102
doi: 10.1103/PhysRevLett.120.186102
34 Wang X L, Wang C Y, Chen C J, et al. Free-standing monatomic thick two-dimensional gold [J]. Nano Lett., 2019, 19: 4560
doi: 10.1021/acs.nanolett.9b01494 pmid: 31241953
35 Bals S, Casavola M, Van Huis M A, et al. Three-dimensional atomic imaging of colloidal core-shell nanocrystals [J]. Nano Lett., 2011, 11: 3420
doi: 10.1021/nl201826e pmid: 21786766
36 Scott M C, Chen C C, Mecklenburg M, et al. Electron tomography at 2.4-ångström resolution [J]. Nature, 2012, 483: 444
doi: 10.1038/nature10934
37 Wang C Y, Duan H C, Chen C J, et al. Three-dimensional atomic structure of grain boundaries resolved by atomic-resolution electron tomography [J]. Matter, 2020, 3: 1999
doi: 10.1016/j.matt.2020.09.003
38 Wang C Y, Liu H Y, Duan H C, et al. 3D atomic imaging of low-coordinated active sites in solid-state dealloyed hierarchical nanoporous gold [J]. J. Mater. Chem., 2021, 9A: 25513
39 Tran R, Xu Z H, Radhakrishnan B, et al. Surface energies of elemental crystals [J]. Sci. Data, 2016, 3: 160080
doi: 10.1038/sdata.2016.80
40 Qi Z, Vainio U, Kornowski A, et al. Porous gold with a nested‐network architecture and ultrafine structure [J]. Adv. Funct. Mater., 2015, 25: 2530
doi: 10.1002/adfm.v25.17
41 Ye X L, Lu N, Li X J, et al. Primary and secondary dealloying of Au(Pt)-Ag: Structural and compositional evolutions, and volume shrinkage [J]. J. Electrochem. Soc., 2014, 161: C517
doi: 10.1149/2.0131412jes
[1] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[2] 邓辉球; 胡望宇; 舒小林; 赵立华; 张邦维 . Pt-Rh二元合金系表面偏聚的分析型EAM模型计算[J]. 金属学报, 2001, 37(5): 467-471 .
[3] 樊永年;汤宝珍;乔桂文. YBa_2Cu_3O_(7-x)-Ag界面与表面的研究[J]. 金属学报, 1992, 28(7): 70-73.
[4] 齐芸馨;唐文泰;夏建国;李望;展振宗. Au-Ni-Kovar合金系统基底元素表面偏聚的SAM和XPS研究[J]. 金属学报, 1990, 26(6): 145-150.