|
|
镁基储氢合金动力学调控及电化学性能 |
朱敏, 欧阳柳章( ) |
华南理工大学 材料科学与工程学院 广东省先进储能材料重点实验室 广州 510641 |
|
Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys |
ZHU Min, OUYANG Liuzhang( ) |
Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China |
引用本文:
朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
Min ZHU,
Liuzhang OUYANG.
Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. Acta Metall Sin, 2021, 57(11): 1416-1428.
1 |
Zhu M, Lu Y S, Ouyang L Z, et al. Thermodynamic tuning of Mg-based hydrogen storage alloys: A review [J]. Materials (Basel), 2013, 6: 4654
|
2 |
Zheng J, Zhou H, Wang C G, et al. Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage [J]. Energy Storage Mater., 2021, 35: 695
|
3 |
Shang Y Y, Pistidda C, Gizer G, et al. Mg-based materials for hydrogen storage [J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.06.007?
|
4 |
Zhang X L, Liu Y F, Zhang X, et al. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis [J]. Mater. Today Nano, 2020, 9: 100064
|
5 |
Kadir K, Sakai T, Uehara I. Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35) (Mg1.32Ca0.68) Ni9 of the AB2C9 type structure [J]. J. Alloys Compd., 2000, 302: 112
|
6 |
Song M Y, Manaud J P, Darriet B. Dehydriding kinetics of a mechanically alloyed mixture Mg-10wt. %Ni [J]. J. Alloys Compd., 1999, 282: 243
|
7 |
Aguey-Zinsou K F, Ares-Fernández J R. Hydrogen in magnesium: New perspectives toward functional stores [J]. Energy Environ. Sci., 2010, 3: 526
|
8 |
Chen B H, Chuang Y S, Chen C K. Improving the hydrogenation properties of MgH2 at room temperature by doping with nano-size ZrO2 catalyst [J]. J. Alloys Compd., 2016, 655: 21
|
9 |
Ouyang L Z, Tang J J, Zhao Y J, et al. Express penetration of hydrogen on Mg(101¯3) along the close-packed-planes [J]. Sci. Rep., 2015, 5: 10776
|
10 |
Luo Q, Li J D, Li B, et al. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism [J]. J. Magnes. Alloy., 2019, 7: 58
|
11 |
Liu Y F, Du H F, Zhang X, et al. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride [J]. Chem. Commun., 2016, 52: 705
|
12 |
Zhang X, Leng Z H, Gao M X, et al. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2 [J]. J. Power Sources, 2018, 398: 183
|
13 |
Wang K, Zhang X, Liu Y F, et al. Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2 [J]. Chem. Eng. J., 2021, 406: 126831
|
14 |
Wang Z Y, Ren Z H, Jian N, et al. Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2 [J]. J. Mater. Chem., 2018, 6A: 16177
|
15 |
Zhang L T, Xiao X Z, Xu C C, et al. Remarkably improved hydrogen storage performance of MgH2 catalyzed by multivalence NbHx nanoparticles [J]. J. Phys. Chem., 2015, 119C: 8554
|
16 |
Wang K, Zhang X, Ren Z H, et al. Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature [J]. Energy Storage Mater., 2019, 23: 79
|
17 |
Lin H J, Matsuda J, Li H W, et al. Enhanced hydrogen desorption property of MgH2 with the addition of cerium fluorides [J]. J. Alloys Compd., 2015, 645: S392
|
18 |
Cui J, Wang H, Liu J W, et al. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts [J]. J. Mater. Chem., 2013, 1A: 5603
|
19 |
Liu J W, Fu Y Y, Huang W C, et al. Direct microstructural evidence on the catalyzing mechanism for de/hydrogenation of Mg by multi-valence NbOx [J]. J. Phys. Chem., 2020, 124C: 6571
|
20 |
Cui J, Liu J W, Wang H, et al. Mg-TM (TM: Ti, Nb, V, Co, Mo, or Ni) core-hell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism [J]. J. Mater. Chem., 2014, 2A: 9645
|
21 |
An C H, Liu G, Li L, et al. In situ synthesized one-dimensional porous Ni@C nanorods as catalysts for hydrogen storage properties of MgH2 [J]. Nanoscale, 2014, 6: 3223
|
22 |
Chen J, Xia G L, Guo Z P, et al. Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH2 [J]. J. Mater. Chem., 2015, 3A: 15843
|
23 |
Wang S, Gao M X, Yao Z H, et al. High-loading, ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres for fast (de)hydrogenation kinetics of MgH2 [J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.05.004
|
24 |
Wang Z Y, Zhang X L, Ren Z H, et al. In situ formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2 [J]. J. Mater. Chem., 2019, 7A: 14244
|
25 |
Karst J, Sterl F, Linnenbank H, et al. Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale [J]. Sci. Adv., 2020, 6: eaaz0566
|
26 |
Cui J, Ouyang L Z, Wang H, et al. On the hydrogen desorption entropy change of modified MgH2 [J]. J. Alloys Compd., 2018, 737: 427
|
27 |
Ouyang L Z, Ye S Y, Dong H W, et al. Effect of interfacial free energy on hydriding reaction of Mg-Ni thin films [J]. Appl. Phys. Lett., 2007, 90: 021917
|
28 |
Xia G L, Tan Y B, Chen X W, et al. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene [J]. Adv. Mater., 2015, 27: 5981
|
29 |
Shinde S S, Kim D H, Yu J Y, et al. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage [J]. Nanoscale, 2017, 9: 7094
|
30 |
Haas I, Gedanken A. Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry [J]. Chem. Commun., 2008, (15): 1795
|
31 |
Zhang X, Liu Y F, Ren Z H, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides [J]. Energy Environ. Sci., 2021, 14: 2302
|
32 |
Zhu M, Zhu W H, Chung C Y, et al. Microstructure and hydrogen absorption properties of nano-phase composite prepared by mechanical alloying of MmNi5-x(CoAlMn)x and Mg [J]. J. Alloys Compd., 1999, 293-295: 531
|
33 |
Zhu M, Wang H, Ouyang L Z, et al. Composite structure and hydrogen storage properties in Mg-base alloys [J]. Int. J. Hydrogen Energy, 2006, 31: 251
|
34 |
Ouyang L Z, Wang H, Zhu M, et al. Microstructure of MmM5/Mg multi-layer films prepared by magnetron sputtering [J]. J. Alloys Compd., 2005, 404-406: 485
|
35 |
Wang H, Ouyang L Z, Peng C H, et al. MmM5/Mg multi-layer hydrogen storage thin films prepared by dc magnetron sputtering [J]. J. Alloys Compd., 2004, 370: L4
|
36 |
Wang H, Ouyang L Z, Zeng M Q, et al. Microstructure and hydrogen sorption properties of Mg–Ni/MmM5 multi-layer film by magne-tron sputtering [J]. Int. J. Hydrogen Energy, 2004, 29: 1389
|
37 |
Ouyang L Z, Wang H, Zhu M, et al. Microstructure of MmM5/Mg multi-layer hydrogen storage films prepared by magnetron sputtering [J]. Microsc. Res. Tech., 2004, 64: 323
|
38 |
Zhu M, Gao Y, Che X Z, et al. Hydriding kinetics of nano-phase composite hydrogen storage alloys prepared by mechanical alloying of Mg and MmNi5-x(CoAlMn)x [J]. J. Alloys Compd., 2002, 330-332: 708
|
39 |
Yu X B, Yang Z X, Liu H K, et al. The effect of a Ti-V-based BCC alloy as a catalyst on the hydrogen storage properties of MgH2 [J]. Int. J. Hydrogen Energy, 2010, 35: 6338
|
40 |
Fujii H, Orimo S, Ikeda K. Cooperative hydriding properties in a nanostructured Mg2Ni-H system [J]. J. Alloys Compd., 1997, 253-254: 80
|
41 |
Zaluska A, Zaluski L, Ström-Olsen J O. Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni [J]. J. Alloys Compd., 1999, 289: 197
|
42 |
Higuchi K, Yamamoto K, Kajioka H, et al. Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films [J]. J. Alloys Compd., 2002, 330-332: 526
|
43 |
Ouyang L Z, Yang X S, Zhu M, et al. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites [J]. J. Phys. Chem., 2014, 118C: 7808
|
44 |
Luo Q, Gu Q F, Liu B, et al. Achieving superior cycling stability by in situ forming NdH2-Mg-Mg2Ni nanocomposites [J]. J. Mater. Chem., 2018, 6A: 23308
|
45 |
Lin H J, Ouyang L Z, Wang H, et al. Phase transition and hydrogen storage properties of melt-spun Mg3LaNi0.1 alloy [J]. Int. J. Hydrogen Energy, 2012, 37: 1145
|
46 |
Lin H J, Tang J J, Yu Q, et al. Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump [J]. Nano Energy, 2014, 9: 80
|
47 |
Wang H, Zhang H L, Luo C, et al. Cooperative catalysis on the dehydrogenation of NdCl3 doped LiBH4-MgH2 composites [J]. Mater. Trans., 2011, 52: 647
|
48 |
Luo C, Wang H, Sun T, et al. Enhanced dehydrogenation properties of LiBH4 compositing with hydrogenated magnesium-rare earth compounds [J]. Int. J. Hydrogen Energy, 2012, 37: 13446
|
49 |
Sun T, Wang H, Zhang Q G, et al. Synergetic effects of hydrogenated Mg3La and TiCl3 on the dehydrogenation of LiBH4 [J]. J. Mater. Chem., 2011, 21: 9179
|
50 |
Zhang Z G, Luo F P, Wang H, et al. Direct synthesis and hydrogen storage characteristics of Mg-B-H compounds [J]. Int. J. Hydrogen Energy, 2012, 37: 926
|
51 |
Hong K. The development of hydrogen storage alloys and the progress of nickel hydride batteries [J]. J. Alloys Compd., 2001, 321: 307
|
52 |
Ouyang L Z, Huang J L, Wang H, et al. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review [J]. Mater. Chem. Phys., 2017, 200: 164
|
53 |
Kadir K, Sakai T, Uehara I. Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R = La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 laves-type layers alternating with AB5 layers [J]. J. Alloys Compd., 1997, 257: 115
|
54 |
Peng C H, Zhu M. Microstructure and hydrogen storage properties of a multi-phase Ml0.7Mg0.3Ni3.2 hydrogen storage alloy [J]. J. Alloys Compd., 2004, 375: 324
|
55 |
Kohno T, Yoshida H, Kawashima F, et al. Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14 [J]. J. Alloys Compd., 2000, 311: L5
|
56 |
Pan H G, Liu Y F, Gao M X, et al. A study of the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x (x = 2.5-5.0) hydrogen storage alloys [J]. J. Electrochem. Soc., 2003, 150: A565
|
57 |
Denys R V, Riabov A B, Yartys V A, et al. Mg substitution effect on the hydrogenation behaviour, thermodynamic and structural properties of the La2Ni7-H(D)2 system [J]. J. Solid State Chem., 2008, 181: 812
|
58 |
Pan H G, Jin Q W, Gao M X, et al. Effect of the cerium content on the structural and electrochemical properties of the La0.7-xCexMg0.3-Ni2.875Mn0.1Co0.525 (x = 0-0.5) hydrogen storage alloys [J]. J. Alloys Compd., 2004, 373: 237
|
59 |
Pan H G, Liu Y F, Gao M X, et al. Structural and electrochemical properties of the La0.7Mg0.3Ni2.975-xCo0.525Mnx hydrogen storage electrode alloys [J]. J. Electrochem. Soc., 2004, 151: A374
|
60 |
Jiang L, Li G X, Xu L Q, et al. Effect of substituting Mn for Ni on the hydrogen storage and electrochemical properties of ReNi2.6-x-MnxCo0.9 alloys [J]. Int. J. Hydrogen Energy, 2010, 35: 204
|
61 |
Liu Y F, Pan H G, Gao M X, et al. Effect of Co content on the structural and electrochemical properties of the La0.7Mg0.3Ni3.4-x-Mn0.1Cox hydride alloys: Ⅱ. Electrochemical properties [J]. J. Alloys Compd., 2004, 376: 304
|
62 |
Zhang F L, Luo Y C, Sun K, et al. Effect of Co content on the structure and electrochemical properties of La1.5Mg0.5Ni7-xCox (x = 0, 1.2, 1.8) hydrogen storage alloys [J]. J. Alloys Compd., 2006, 424: 218
|
63 |
Wang D H, Luo Y C, Yan R X, et al. Phase structure and electrochemical properties of La0.67Mg0.33Ni3.0-xCox (x = 0.0, 0.25, 0.5, 0.75) hydrogen storage alloys [J]. J. Alloys Compd., 2006, 413: 193
|
64 |
Pan H G, Liu Y F, Gao M X, et al. Electrochemical properties of the La0.7Mg0.3Ni2.65-xMn0.1Co0.75Alx (x = 0-0.5) hydrogen storage alloy electrodes [J]. J. Electrochem. Soc., 2005, 152: A326
|
65 |
Chu H L, Zhang Y, Qiu S J, et al. Electrochemical performances of cobalt-free La0.7Mg0.3Ni3.5-x(MnAl2)x (x = 0-0.20) hydrogen storage alloy electrodes [J]. J. Alloys Compd., 2008, 457: 90
|
66 |
Liu Y F, Cao Y H, Huang L, et al. Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries [J]. J. Alloys Compd., 2011, 509: 675
|
67 |
Cao Z J, Ouyang L Z, Li L L, et al. Enhanced discharge capacity and cycling properties in high-samarium, praseodymium/neodymium-free, and low-cobalt A2B7 electrode materials for nickel-metal hydride battery [J]. Int. J. Hydrogen Energy, 2015, 40: 451
|
68 |
Ouyang L Z, Yang T H, Zhu M, et al. Hydrogen storage and electrochemical properties of Pr, Nd and Co-free La13.9Sm24.7Mg1.5Ni58-Al1.7Zr0.14Ag0.07 alloy as a nickel-metal hydride battery electrode [J]. J. Alloys Compd., 2018, 735: 98
|
69 |
Liu Y F, Pan H G, Gao M X, et al. The electrochemical performance of a La-Mg-Ni-Co-Mn metal hydride electrode alloy in the temperature range of -20 to 30℃ [J]. Electrochim. Acta, 2004, 49: 545
|
70 |
Young K, Koch J, Yasuoka S, et al. Mn in misch-metal based superlattice metal hydride alloy-Part 2 Ni/MH battery performance and failure mechanism [J]. J. Power Sources, 2015, 277: 433
|
71 |
Ni C Y, Zhou H Y, Shi N L, et al. Electrochemical performances of Mm0.7MgxNi2.58Co0.5Mn0.3Al0.12 (x = 0, 0.3) hydrogen storage alloys in the temperature range from 238 to 303 K [J]. Electrochim. Acta, 2012, 59: 237
|
72 |
Shen X Q, Chen Y G, Tao M D, et al. The structure and 233 K electrochemical properties of La0.8-xNdxMg0.2Ni3.1Co0.25Al0.15 (x = 0.0-0.4) hydrogen storage alloys [J]. Int. J. Hydrogen Energy, 2009, 34: 2661
|
73 |
Lei Y Q, Wu Y M, Yang Q M, et al. Electrochemical behaviour of some mechanically alloyed Mg-Ni-based amorphous hydrogen storage alloys [J]. Z. Phys. Chem., 1994, 183: 379
|
74 |
Notten P H L, Ouwerkerk M, van Hal H, et al. High energy density strategies: From hydride-forming materials research to battery integration [J]. J. Power Sources, 2004, 129: 45
|
75 |
Orimo S, Ikeda K, Fujii H, et al. Structural and hydriding properties of the Mg-Ni-H system with nano- and/or amorphous structures [J]. Acta Mater., 1997, 45: 2271
|
76 |
Iwakura C, Nohara S, Zhang S G, et al. Hydriding and dehydriding characteristics of an amorphous Mg2Ni-Ni composite [J]. J. Alloys Compd., 1999, 285: 246
|
77 |
Zhang Y, Lei Y Q, Chen L X, et al. The effect of partial substitution of Zr for Ti on the electrochemical properties and surface passivation film of Mg35Ti10-xZrxNi55 (x = 1, 3, 5, 7, 9) electrode alloys [J]. J. Alloys Compd, 2002, 337: 296
|
78 |
Liu W H, Lei Y Q, Sun D L, et al. A study of the degradation of the electrochemical capacity of amorphous Mg50Ni50 alloy [J]. J. Power Sources, 1996, 58: 243
|
79 |
Zhang Y, Liao B, Chen L X, et al. The effect of Ni content on the electrochemical and surface characteristics of Mg90-xTi10Nix (x = 50, 55, 60) ternary hydrogen storage electrode alloys [J]. J. Alloys Compd, 2001, 327: 195
|
80 |
Mu D, Hatano Y, Abe T, et al. Degradation kinetics of discharge capacity for amorphous Mg-Ni electrode [J]. J. Alloys Compd., 2002, 334: 232
|
81 |
Lee H Y, Goo N H, Jeong W T, et al. The surface state of nanocrystalline and amorphous Mg2Ni alloys prepared by mechanical alloying [J]. J. Alloys Compd., 2000, 313: 258
|
82 |
Huang J L, Ouyang L Z, Wang H, et al. Hydrogenation and crystallization of amorphous phase: A new mechanism for the electrochemical capacity and its decay in milled Mg-Ni alloys [J]. Electrochim. Acta, 2019, 305: 145
|
83 |
Liu W H, Lei Y Q, Wu J, et al. The capacity deterioration model of mechanically alloyed MgxNi100-x amorphous electrodes in charging-discharging cycling [J]. Int. J. Hydrogen Energy, 1997, 22: 999
|
84 |
Nohara S, Hamasaki K, Zhang S G, et al. Electrochemical characteristics of an amorphous Mg0.9V0.1Ni alloy prepared by mechanical alloying [J]. J. Alloys Compd., 1998, 280: 104
|
85 |
Ye H, Lei Y Q, Chen L S, et al. Electrochemical characteristics of amorphous Mg0.9M0.1Ni (M = Ni, Ti, Zr, Co and Si) ternary alloys prepared by mechanical alloying [J]. J. Alloys Compd., 2000, 311: 194
|
86 |
Anik M, Özdemir G, Küçükdeveci N, et al. Effect of Al, B, Ti and Zr additive elements on the electrochemical hydrogen storage performance of MgNi alloy [J]. Int. J. Hydrogen Energy, 2011, 36: 1568
|
87 |
Han S C, Lee P S, Lee J Y, et al. Effects of Ti on the cycle life of amorphous MgNi-based alloy prepared by ball milling [J]. J. Alloys Compd., 2000, 306: 219
|
88 |
Huang J L, Wang H, Ouyang L Z, et al. Reducing the electrochemical capacity decay of milled Mg-Ni alloys: The role of stabilizing amorphous phase by Ti-substitution [J]. J. Power Sources, 2019, 438: 226984
|
89 |
Li P, Wang H, Jiang W, et al. Promoting the cycling stability of amorphous MgNi-based alloy electrodes by mitigating hydrogen-induced crystallization [J]. Int. J. Hydrogen Energy, 2021, 46: 6701
|
90 |
Kim J S, Lee C R, Choi J W, et al. Effects of F-treatment on degradation of Mg2Ni electrode fabricated by mechanical alloying [J]. J. Power Sources, 2002, 104: 201
|
91 |
Yan S L, Nei J, Li P F, et al. Effects of Cs2CO3 additive in KOH electrolyte used in Ni/MH batteries [J]. Batteries, 2017, 3: 41
|
92 |
Yan S L, Young K H, Ng K Y. Effects of salt additives to the KOH electrolyte used in Ni/MH batteries [J]. Batteries, 2015, 1: 54
|
93 |
Shangguan E B, Li J, Chang Z R, et al. Sodium tungstate as electrolyte additive to improve high-temperature performance of nickel-metal hydride batteries [J]. Int. J. Hydrogen Energy, 2013, 38: 5133
|
94 |
Mohamad A A, Mohamed N S, Alias Y, et al. Studies of alkaline solid polymer electrolyte and mechanically alloyed polycrystalline Mg2Ni for use in nickel metal hydride batteries [J]. J. Alloys Compd., 2002, 337: 208
|
95 |
Huang J L, Liao C W, Wang H, et al. Exploring new electrolyte to inhibit corrosion of Mg-based amorphous alloy anodes: A route for promotion energy density of Ni-MH battery [J]. J. Power Source, under review
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|