Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 960-968    DOI: 10.11900/0412.1961.2019.00403
  本期目录 | 过刊浏览 |
AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响
赵嫚嫚1, 秦森1, 冯捷1, 代永娟1, 国栋1,2()
1.河北科技大学材料科学与工程学院 石家庄 050000
2.天津职业技术师范大学机械工程学院 天津 300222
Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel
ZHAO Manman1, QIN Sen1, FENG Jie1, DAI Yongjuan1, GUO Dong1,2()
1. College of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
2. College of Mechanical Engineering, Tianjin Vocational and Technical Normal University, Tianjin 300222, China
引用本文:

赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
Manman ZHAO, Sen QIN, Jie FENG, Yongjuan DAI, Dong GUO. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. Acta Metall Sin, 2020, 56(7): 960-968.

全文: PDF(2926 KB)   HTML
摘要: 

在T92钢的成分基础上添加了Al元素并对Ni含量进行适当调整后制备出新型1Cr9Al(1~3)Ni(1~ 7)WVNbB高铝铁素体耐热钢。利用Gleeble-3800热模拟试验机,对1Cr9Al(1~3)Ni(1~7)WVNbB高铝钢进行了950~1150 ℃、0.1~10 s-1应变速率下60%变形量的等温恒速热压缩实验,研究了Al、Ni加入量对钢热变形行为、峰值应力及热变形激活能的影响,并通过拟合得到了含有Zener-Hollomon参数的流变应力表达式,建立了该耐热钢的本构方程。结果表明,Al的添加及Al含量的增大明显降低了热压缩下的流变应力与峰值应力,即明显降低了钢的加工难度;与T92钢相比,4组试样的热变形激活能分别提高了38.136%、19.188%、28.003%和11.915%。

关键词 高铝铁素体耐热钢热压缩变形流变应力热变形本构方程    
Abstract

The addition of Al and Ni to ferritic heat resistant steel can improve its high temperature strength and high temperature oxidation resistance. Al and Ni in steel have some effects on the thermal deformation behavior of steel. But there is less research on it. In this work, a new type of 1Cr9Al(1~3)Ni(1~ 7)WVNbB high aluminum ferrite heat-resistant steel was prepared by adding Al element to T92 steel and adjusting Ni content properly. Gleeble-3800 thermal simulation test machine was used to conduct isothermal and constant speed thermal compression experiment with 60% deformation at 950~1150 ℃ and 0.1~10 s-1 strain rates, respectively. The effects of Al and Ni additions on the hot deformation behavior, peak stress and activation energy of hot deformation of the steel were studied. The rheological stress expression containing Zener-Hollomon parameters were obtained by fitting, and the constitutive equation of the test steel was established. The results show that the addition of Al and the increase of Al content significantly reduces rheological stress and peak stress under thermal compression, which greatly reduces the difficulty of test steel processing. Compared with T92 steel, the thermal deformation activation energies of four sample groups increase by 38.136%, 19.188%, 28.003%, and 11.915%, respectively. The peak stress calculated by the constitutive equation is in good agreement with the experimental data. The results show that the constitutive equation has high accuracy. The relationship between peak flow stress, deformation temperature and strain rate can be expressed well.

Key wordshigh alumina ferritic heat resistant steel    thermal compression deformation    rheological stress    thermal deformation constitutive equation
收稿日期: 2019-11-25     
ZTFLH:  TG142.33  
基金资助:国家自然科学基金项目(51774108);国家自然科学基金项目(51874116)
作者简介: 赵嫚嫚,女,1993年生,硕士生
Alloy No.CNSiMnCrMoNiAlNbVWBPSFe
T92[9]0.07~0.130.03~0.07≤0.500.30~0.608.50~9.500.30~0.60≤0.4000.040~0.0900.150~0.250~1.50~2.000.001~0.006≤0.020≤0.010Bal.
10.100.050.300.509.000.303.81.00.060.201.500.0030.0010.001Bal.
20.100.050.300.509.000.301.41.00.060.201.500.0030.0010.001Bal.
30.100.050.300.509.000.307.33.00.060.201.500.0030.0010.001Bal.
40.100.050.300.509.000.303.93.00.060.201.500.0030.0010.001Bal.
表1  T92钢[9]及1Cr9Al(1~3)Ni(1~7)WVNbB钢的化学成分 (mass fraction / %)
图1  等温压缩工艺流程示意图
图2  合金钢理想状态下的真应力-真应变曲线
图3  1Cr9Al(1~3)Ni(1~7)WVNbB钢及T92钢[9]在950 ℃、1150 ℃及1 s-1应变速率下的真应力-真应变曲线
图4  No.4试样在950~1150 ℃及0.1~10 s-1应变速率下的真应力-真应变曲线
图5  1Cr9Al(1~3)Ni(1~7)WVNbB高铝钢和T92钢[9]在不同变形温度和应变速率下的三维峰值流变应力图
图6  No.4试样lnσp-lnε˙、σp-lnε˙、ln[sinh(ασp)]-lnε˙、ln[sinh(ασp)]-1000/T的关系曲线
图7  No.4试样lnZ-ln[sinh(ασp)]的关系曲线

Steel

No.

n

α

MPa-1

A

s-1

Q

kJ·mol-1

16.695210.007596.38581×1020531.825
26.324100.007153.99328×1017458.873
35.758050.007241.51538×1019492.812
44.432330.010605.67709×1016430.874
表2  峰值应力下1Cr9Al(1~3)Ni(1~7)WVNbB高铝钢本构方程参数
图8  1Cr9Al(1~3)Ni(1~7)WVNbB高铝钢在950~1150 ℃、0.1~10 s-1应变速率下实验值和理论计算值之间的比较
[1] Huang J K, He C C, Shi Y, et al. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel [J]. J. Jilin Univ. (Eng. Technol. Ed.), 2014, 44: 1037
[1] (黄健康, 何翠翠, 石 玗等. 铝/钢异种金属焊接接头界面Al-Fe金属间化合物生成及其热力学分析 [J]. 吉林大学学报(工学版), 2014, 44: 1037)
[2] Liu Z Y, La P Q, Zeng L, et al. Effect of aluminum on microstructure of HP40 steel [J]. J. Iron Steel Res. Int., 2007, 14: 373
[3] Ma X W, Zhang J F, Hao W W, et al. Microstructure and properties of NiAl-V alloy prepared by arc melting [J]. Rare Met. Mater. Eng., 2018, 47: 3528
[3] (马雪微, 张建飞, 郝文纬等. 电弧熔炼态NiAl-V合金的组织演变及力学性能 [J]. 稀有金属材料与工程, 2018, 47: 3528)
[4] Guo L N, Huang Y, Liu L M, et al. Thermoplastic deformation behavior and hot processing map of 12Cr-ODS ferritic steel [J]. Hot Work. Technol., 2019, 48(9): 135
[4] (郭丽娜, 黄 英, 刘立明等. 12Cr-ODS铁素体钢的热塑性变形行为和热加工图 [J]. 热加工工艺, 2019, 48(9): 135)
[5] Guo L N, Jia C C, Hu B F, et al. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route [J]. Mater. Sci. Eng., 2010, A527: 5220
[6] Sun Y, Wan Z P, Hu L X, et al. Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map [J]. Mater. Des., 2015, 86: 922
[7] Chen M S, Lin Y C, Li K K, et al. A new method to establish dynamic recrystallization kinetics model of a typical solution-treated Ni-based superalloy [J]. Comput. Mater. Sci., 2016, 122: 150
[8] Jia D, Sun W R, Xu D S, et al. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35: 1851
[9] Xu L Q. Research on phase transformation behaviors and heat-treatment process of T92 ferritic steel [D]. Tianjin: Tianjin University, 2013
[9] (许林青. T92铁素体钢相变行为及热处理工艺的研究 [D]. 天津: 天津大学, 2013)
[10] Ban Y J, Zhang Y, Tian B H, et al. Hot deformation behavior and hot processing map of Cu-0.8Cr-0.3Zr-0.2Mg alloy [J]. Trans. Mater. Heat Treat., 2019, 40(9): 44
[10] (班宜杰, 张 毅, 田保红等. Cu-0.8Cr-0.3Zr-0.2Mg合金热变形行为及热加工图 [J]. 材料热处理学报, 2019, 40(9): 44)
[11] Huang T Y. Materials Processing Technology [M]. Beijing: Tsinghua University Press, 2004: 20
[11] (黄天佑. 材料加工工艺 [M]. 北京: 清华大学出版社, 2004: 20)
[12] Xiao Y H, Guo C. Flow stress model for steel 30Cr during hot deformation [J]. Forg. Stamp. Technol., 2018, 43: 176
[12] (肖艳红, 郭 成. 30Cr钢高温变形流变应力模型 [J]. 锻压技术, 2018, 43: 176)
[13] Zhang W, Liu Y, Li H Z, et al. Constitutive modeling and processing map for elevated temperature flow behaviors of a powder metallurgy titanium aluminide alloy [J]. J. Mater. Process. Technol., 2009, 209: 5363
[14] Zhang P, Hu C, Zhu Q, et al. Hot compression deformation and constitutive modeling of GH4698 alloy [J]. Mater. Des., 2015, 65: 1153
[15] Li N, Zhao C Z, Jiang Z H, et al. Flow behavior and processing maps of high-strength low-alloy steel during hot compression [J]. Mater. Charact., 2019, 153: 224
[16] Fang X L, Jiang D J. Constitutive descriptions for hot compressed low-pressure rotor steel at elevated high temperature [J]. J. Mater. Sci., 2011, 46: 3646
[17] Zhang X T, Huang L, Li J J, et al. Flow behaviors and constitutive model of 300M high strength steel at elevated temperature [J]. J. Central South Univ. (Sci. Technol.), 2017, 48: 1439
[17] (章晓婷, 黄 亮, 李建军等. 300M高强钢高温流变行为及本构方程 [J]. 中南大学学报(自然科学版), 2017, 48: 1439)
[18] Hu X L, Han P B, Lu S L, et al. High temperature flow behavior and constitutive model of 35CrMo steel [J]. J. Hebei Univ. Sci. Technol., 2019, 40: 351
[18] (胡希磊, 韩鹏彪, 鲁素玲等. 35CrMo钢高温流变行为及其本构方程 [J]. 河北科技大学学报, 2019, 40: 351)
[19] Bruni C, Forcellese A, Gabrielli F. Hot workability and models for flow stress of NIMONIC 115 Ni-base superalloy [J]. J. Mater. Process. Technol., 2002, 125-126: 242
[20] Liang J X, Yong Q L, Zhang L, et al. Hot deformation behavior and its processing map of 1Cr17Ni1 duplex stainless steel [J]. Iron Steel, 2016, 51(9): 82
[20] (梁剑雄, 雍岐龙, 张 良等. 1Cr17Ni1双相不锈钢的热变形行为及其热加工图 [J]. 钢铁, 2016, 51(9): 82)
[21] Li A. Flow stress behavior of 7AXX aluminum alloy during hot compression [J]. Atom. Energy Sci. Technol., 2019, 53: 504
[21] (李 昂. 7AXX铝合金在热压缩状态下的流变行为 [J]. 原子能科学技术, 2019, 53: 504)
[22] Vo P, Jahazi M, Yue S, et al. Flow stress prediction during hot working of near-α titanium alloys [J]. Mater. Sci. Eng., 2007, A447: 99
[23] Zhang W, Yan D N, Zou D N, et al. Hot deformation behavior and constitutive relationship for super-low carbon 13Cr-5Ni-2Mo martensitic stainless steel [J]. Iron Steel, 2012, 47(5): 69
[23] (张 威, 闫东娜, 邹德宁等. 超低碳13Cr-5Ni-2Mo马氏体不锈钢热变形行为及本构关系 [J]. 钢铁, 2012, 47(5): 69)
[24] Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels [J]. Acta Mater., 1996, 44: 137
[25] Wang Y, Lin D L, Law C C. A correlation between tensile flow stress and Zener-Hollomon factor in TiAl alloys at high temperatures [J]. J. Mater. Sci. Lett., 2000, 19: 1185
[1] 王涛, 万志鹏, 孙宇, 李钊, 张勇, 胡连喜. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54(1): 83-92.
[2] 余晖 KIM Youngmin 于化顺 YOU Bongsun 闵光辉. Mg-Zn-Zr-Ce合金高温变形行为与热加工性能研究[J]. 金属学报, 2012, 48(9): 1123-1131.
[3] 孙朝阳 栾京东 刘赓 李瑞 张清东. AZ31镁合金热变形流动应力预测模型[J]. 金属学报, 2012, 48(7): 853-860.
[4] 童剑 黄华 袁广银 丁文江. 准晶增强的Mg-Zn-Al-(Y)合金热压缩变形行为[J]. 金属学报, 2011, 47(12): 1520-1526.
[5] 覃银江 潘清林 何运斌 李文斌 刘晓艳 范曦. ZK60镁合金热压缩变形流变应力行为与预测[J]. 金属学报, 2009, 45(7): 887-891.
[6] 王健; 肖宏; 张志国 . 流变应力逆分析确定静态再结晶动力学模型[J]. 金属学报, 2008, 44(7): 837-842 .
[7] 张红钢; 何勇; 刘雪峰; 谢建新 . NiTi形状记忆合金热压缩变形行为及本构关系[J]. 金属学报, 2007, 43(9): 930-936 .
[8] 滕浩; 尹志民; 朱远志; 周科朝; 李志友 . Ni76Cr19AlTi合金的热变形行为[J]. 金属学报, 2006, 42(6): 629-634 .
[9] 张北江; 赵光普; 焦兰英; 胥国华; 秦鹤勇; 冯涤 . 热加工工艺对GH4586合金微观组织的影响[J]. 金属学报, 2005, 41(4): 351-356 .
[10] 高维林;白光润;周志敏;栾瑰馥;龙春满. 含Nb低碳钢的热变形行为和金属塑性形变中流变应力的预测[J]. 金属学报, 1992, 28(8): 25-32.