|
|
Al、Ni对1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响 |
赵嫚嫚1, 秦森1, 冯捷1, 代永娟1, 国栋1,2( ) |
1.河北科技大学材料科学与工程学院 石家庄 050000 2.天津职业技术师范大学机械工程学院 天津 300222 |
|
Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel |
ZHAO Manman1, QIN Sen1, FENG Jie1, DAI Yongjuan1, GUO Dong1,2( ) |
1. College of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China 2. College of Mechanical Engineering, Tianjin Vocational and Technical Normal University, Tianjin 300222, China |
引用本文:
赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. Al、Ni对1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
Manman ZHAO,
Sen QIN,
Jie FENG,
Yongjuan DAI,
Dong GUO.
Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. Acta Metall Sin, 2020, 56(7): 960-968.
[1] |
Huang J K, He C C, Shi Y, et al. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel [J]. J. Jilin Univ. (Eng. Technol. Ed.), 2014, 44: 1037
|
[1] |
(黄健康, 何翠翠, 石 玗等. 铝/钢异种金属焊接接头界面Al-Fe金属间化合物生成及其热力学分析 [J]. 吉林大学学报(工学版), 2014, 44: 1037)
|
[2] |
Liu Z Y, La P Q, Zeng L, et al. Effect of aluminum on microstructure of HP40 steel [J]. J. Iron Steel Res. Int., 2007, 14: 373
|
[3] |
Ma X W, Zhang J F, Hao W W, et al. Microstructure and properties of NiAl-V alloy prepared by arc melting [J]. Rare Met. Mater. Eng., 2018, 47: 3528
|
[3] |
(马雪微, 张建飞, 郝文纬等. 电弧熔炼态NiAl-V合金的组织演变及力学性能 [J]. 稀有金属材料与工程, 2018, 47: 3528)
|
[4] |
Guo L N, Huang Y, Liu L M, et al. Thermoplastic deformation behavior and hot processing map of 12Cr-ODS ferritic steel [J]. Hot Work. Technol., 2019, 48(9): 135
|
[4] |
(郭丽娜, 黄 英, 刘立明等. 12Cr-ODS铁素体钢的热塑性变形行为和热加工图 [J]. 热加工工艺, 2019, 48(9): 135)
|
[5] |
Guo L N, Jia C C, Hu B F, et al. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route [J]. Mater. Sci. Eng., 2010, A527: 5220
|
[6] |
Sun Y, Wan Z P, Hu L X, et al. Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map [J]. Mater. Des., 2015, 86: 922
|
[7] |
Chen M S, Lin Y C, Li K K, et al. A new method to establish dynamic recrystallization kinetics model of a typical solution-treated Ni-based superalloy [J]. Comput. Mater. Sci., 2016, 122: 150
|
[8] |
Jia D, Sun W R, Xu D S, et al. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35: 1851
|
[9] |
Xu L Q. Research on phase transformation behaviors and heat-treatment process of T92 ferritic steel [D]. Tianjin: Tianjin University, 2013
|
[9] |
(许林青. T92铁素体钢相变行为及热处理工艺的研究 [D]. 天津: 天津大学, 2013)
|
[10] |
Ban Y J, Zhang Y, Tian B H, et al. Hot deformation behavior and hot processing map of Cu-0.8Cr-0.3Zr-0.2Mg alloy [J]. Trans. Mater. Heat Treat., 2019, 40(9): 44
|
[10] |
(班宜杰, 张 毅, 田保红等. Cu-0.8Cr-0.3Zr-0.2Mg合金热变形行为及热加工图 [J]. 材料热处理学报, 2019, 40(9): 44)
|
[11] |
Huang T Y. Materials Processing Technology [M]. Beijing: Tsinghua University Press, 2004: 20
|
[11] |
(黄天佑. 材料加工工艺 [M]. 北京: 清华大学出版社, 2004: 20)
|
[12] |
Xiao Y H, Guo C. Flow stress model for steel 30Cr during hot deformation [J]. Forg. Stamp. Technol., 2018, 43: 176
|
[12] |
(肖艳红, 郭 成. 30Cr钢高温变形流变应力模型 [J]. 锻压技术, 2018, 43: 176)
|
[13] |
Zhang W, Liu Y, Li H Z, et al. Constitutive modeling and processing map for elevated temperature flow behaviors of a powder metallurgy titanium aluminide alloy [J]. J. Mater. Process. Technol., 2009, 209: 5363
|
[14] |
Zhang P, Hu C, Zhu Q, et al. Hot compression deformation and constitutive modeling of GH4698 alloy [J]. Mater. Des., 2015, 65: 1153
|
[15] |
Li N, Zhao C Z, Jiang Z H, et al. Flow behavior and processing maps of high-strength low-alloy steel during hot compression [J]. Mater. Charact., 2019, 153: 224
|
[16] |
Fang X L, Jiang D J. Constitutive descriptions for hot compressed low-pressure rotor steel at elevated high temperature [J]. J. Mater. Sci., 2011, 46: 3646
|
[17] |
Zhang X T, Huang L, Li J J, et al. Flow behaviors and constitutive model of 300M high strength steel at elevated temperature [J]. J. Central South Univ. (Sci. Technol.), 2017, 48: 1439
|
[17] |
(章晓婷, 黄 亮, 李建军等. 300M高强钢高温流变行为及本构方程 [J]. 中南大学学报(自然科学版), 2017, 48: 1439)
|
[18] |
Hu X L, Han P B, Lu S L, et al. High temperature flow behavior and constitutive model of 35CrMo steel [J]. J. Hebei Univ. Sci. Technol., 2019, 40: 351
|
[18] |
(胡希磊, 韩鹏彪, 鲁素玲等. 35CrMo钢高温流变行为及其本构方程 [J]. 河北科技大学学报, 2019, 40: 351)
|
[19] |
Bruni C, Forcellese A, Gabrielli F. Hot workability and models for flow stress of NIMONIC 115 Ni-base superalloy [J]. J. Mater. Process. Technol., 2002, 125-126: 242
|
[20] |
Liang J X, Yong Q L, Zhang L, et al. Hot deformation behavior and its processing map of 1Cr17Ni1 duplex stainless steel [J]. Iron Steel, 2016, 51(9): 82
|
[20] |
(梁剑雄, 雍岐龙, 张 良等. 1Cr17Ni1双相不锈钢的热变形行为及其热加工图 [J]. 钢铁, 2016, 51(9): 82)
|
[21] |
Li A. Flow stress behavior of 7AXX aluminum alloy during hot compression [J]. Atom. Energy Sci. Technol., 2019, 53: 504
|
[21] |
(李 昂. 7AXX铝合金在热压缩状态下的流变行为 [J]. 原子能科学技术, 2019, 53: 504)
|
[22] |
Vo P, Jahazi M, Yue S, et al. Flow stress prediction during hot working of near-α titanium alloys [J]. Mater. Sci. Eng., 2007, A447: 99
|
[23] |
Zhang W, Yan D N, Zou D N, et al. Hot deformation behavior and constitutive relationship for super-low carbon 13Cr-5Ni-2Mo martensitic stainless steel [J]. Iron Steel, 2012, 47(5): 69
|
[23] |
(张 威, 闫东娜, 邹德宁等. 超低碳13Cr-5Ni-2Mo马氏体不锈钢热变形行为及本构关系 [J]. 钢铁, 2012, 47(5): 69)
|
[24] |
Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels [J]. Acta Mater., 1996, 44: 137
|
[25] |
Wang Y, Lin D L, Law C C. A correlation between tensile flow stress and Zener-Hollomon factor in TiAl alloys at high temperatures [J]. J. Mater. Sci. Lett., 2000, 19: 1185
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|