|
|
纳米Ag和载Ag材料的灭活病菌作用评述 |
胡业旻,廉心桐,董瀚( ) |
上海大学材料科学与工程学院 上海 200444 |
|
On Silver Nano Particles and Silver-Bearing Materials as Virus and Bacteria Killing Agents |
HU Yemin,LIAN Xintong,DONG Han( ) |
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China |
引用本文:
胡业旻,廉心桐,董瀚. 纳米Ag和载Ag材料的灭活病菌作用评述[J]. 金属学报, 2020, 56(4): 633-641.
Yemin HU,
Xintong LIAN,
Han DONG.
On Silver Nano Particles and Silver-Bearing Materials as Virus and Bacteria Killing Agents[J]. Acta Metall Sin, 2020, 56(4): 633-641.
[1] | García-Serradilla M, Risco C, Pacheco B. Drug repurposing for new, efficient, broad spectrum antivirals [J]. Virus Res., 2019, 264: 22 | [2] | White R J. An historical overview of the use of silver in wound management [J]. Br. J. Nurs., 2002, 10(Suppl.4): 3 | [3] | Pliny the Elder translated by Rackham H. Natural History, Libri XXXIII, Part XXXV, Volume IX [M]. Cambridge: Harvard University Press, 1952: 6 | [4] | Guo K X. A brief history of metallography: IV. Early developments of alloy steels [J]. Mater. Sci. Eng., 2001, 19(3): 2 | [4] | 郭可信. 金相学史话(4): 合金钢的早期发展史 [J]. 材料科学与工程, 2001, 19(3): 2 | [5] | Gupta A, Maynes M, Silver S. Effects of halides on plasmid-mediated silver resistance in Escherichia coli [J]. Appl. Environ. Microbiol., 1998, 64: 5042 | [6] | Burdu?el A C, Gherasim O, Grumezescu A M, et al. Biomedical applications of silver nanoparticles: An up-to-date overview [J]. Nanomaterials, 2018, 8: 681 | [7] | Elechiguerra J L, Burt J L, Morones J R, et al. Interaction of silver nanoparticles with HIV-1 [J]. J. Nanobiotechnol., 2005, 3: 6 | [8] | Xiang D X, Zheng C L. Study of silver-nanoparticles on antiviral action [J]. J. Dalian Med. Univ., 2009, 31: 716 | [8] | 向冬喜, 郑丛龙. 纳米银抗病毒作用的研究进展 [J]. 大连医科大学学报, 2009, 31: 716 | [9] | Lara H H, Ayala-Nu?ez N V, Ixtepan-Turrent L, et al. Mode of antiviral action of silver nanoparticles against HIV-1 [J]. J. Nanobiotechnol., 2010, 8: 1 | [10] | Xiang D X, Chen Q, Pang L, et al. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro [J]. J. Virol. Methods, 2011, 178: 137 | [11] | Gui F, Zhang Z R, Zheng C L, et al. Study of nanometer catalyst on antiviral action [J]. Virol. Sin., 2005, 20(1): 70 | [11] | 桂 芳, 张卓然, 郑丛龙等. 消杀型纳米催化剂抗病毒作用的研究 [J]. 中国病毒学, 2005, 20(1): 70 | [12] | Xu L C, Shang J, Sun Y, et al. Silver nanoparticles and anti-bacterial silver coating: Research and development [J]. Chin. J. Tiss. Eng. Res., 2016, 20: 3793 | [12] | 徐连春, 尚 剑, 孙 晔等. 银纳米颗粒及载银抗菌涂层的研究与进展 [J]. 中国组织工程研究, 2016, 20: 3793 | [13] | Davies R L, Etris S F. The development and functions of silver in water purification and disease control [J]. Catal. Today, 1997, 36: 107 | [14] | Alt V, Bechert T, Steinrücke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement [J]. Biomaterials, 2004, 25: 4383 | [15] | Schierholz J M, Lucas L J, Rump A, et al. Efficacy of silver-coated medical devices [J]. J. Hosp. Infect., 1998, 40: 257 | [16] | Kim J S. Antibacterial activity of Ag+ ion-containing silver nanoparticles prepared using the alcohol reduction method [J]. J. Ind. Eng. Chem., 2007, 13: 718 | [17] | Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment [J]. J. Nanopart. Res., 2010, 12: 1531 | [18] | Dong J S, Chen S H, Lu M Q, et al. History and current status of antibacterial materials [J]. Mater. Rev., 2004, 18(3): 41 | [18] | 董加胜, 陈四红, 吕曼祺等. 抗菌材料发展和现状 [J]. 材料导报, 2004, 18(3): 41 | [19] | Wang Y H, Huang N, Yu Z G, et al. Study on anti-HIV activity of silver nanoparticles in vitro [J]. Mod. Prev. Med., 2009, 36: 4123 | [19] | 王云华, 黄 宁, 于增国等. 纳米银体外抗HIV活性的研究 [J]. 现代预防医学, 2009, 36: 4123 | [20] | Lu L, Sun R W, Chen R, et al. Silver nanoparticles inhibit hepatitis B virus replication [J]. Antivir. Ther., 2008, 13: 253 | [21] | Xiang D X, Jiang X T, Li X J, et al. Anti-viral effects of silver-nanoparticles on H3N2 influenza virus in vitro and its mechanism [J]. West China Med. J., 2011, 26(1): 4 | [21] | 向冬喜, 蒋晓婷, 李秀景等. 纳米银体外抗H3N2流感病毒作用及其机制初步探讨 [J]. 华西医学, 2011, 26(1): 4 | [22] | Xiang D X, Zheng Y, Duan W, et al. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo [J]. Int. J. Nanomedicine, 2013, 8: 4103 | [23] | Chen N N, Wang Y H, Yin J J, et al. Inhibitory effects of silver nanoparticles and their possible mechanism on adenovirus in vitro [J]. J. Dalian Med. Univ., 2011, 33: 415 | [23] | 陈娜娜, 王云华, 尹俭俭等. 纳米银体外抗腺病毒作用及机制研究 [J]. 大连医科大学学报, 2011, 33: 415 | [24] | Yin J J, Li X J, Zheng C L. Potential mechanism and inhibitory effects of silver nanoparticles on parainfluenza virus type 3 [J]. J. Jiangsu Univ. (Med. Ed.), 2013, 23: 191 | [24] | 尹俭俭, 李秀景, 郑丛龙. 纳米银灭活3型副流感病毒作用及机制研究 [J]. 江苏大学学报(医学版), 2013, 23: 191 | [25] | Li X J, Yin J J, Zheng C L. Therapeutic effect of silver nanoparticles against influenza in mice [J]. J. Dalian Med. Univ., 2013, 35: 223 | [25] | 李秀景, 尹俭俭, 郑丛龙. 纳米银对小鼠流感治疗作用的研究 [J]. 大连医科大学学报, 2013, 35: 223 | [26] | Hu R L, Yang J. Inhibiting effect of nano-silver on Herpes simplex virus 2 [J]. Mater. Child Health Care China, 2014, 29: 3977 | [26] | 户瑞丽, 杨 君. 纳米银对单纯疱疹病毒2的抑制作用 [J]. 中国妇幼保健, 2014, 29: 3977 | [27] | Sujitha V, Murugan K, Paulpandi M, et al. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti [J]. Parasitol. Res., 2015, 114: 3315 | [28] | WHO. Dengue and severe dengue, Fact sheet N°117 [R]. Geneva: World Health Organization, 2015 | [29] | Yang H Y, Xie X M, Wang B, et al. In vitro inhibitory effects of nanometer silver on tobacco virus [J]. Guizhou Agric. Sci., 2011, 39(11): 112 | [29] | 杨海艳, 谢雪梅, 王 波等. 纳米银对烟草病毒的体外抑制作用 [J]. 贵州农业科学, 2011, 39(11): 112 | [30] | Lv X N, Wang P, Bai R, et al. Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections [J]. Biomaterials, 2014, 35: 4195 | [31] | Li H Y, Chen L J, Li W C, et al. An investigation on antiviral and bactericidal effects of silver nanoparticles against Bombyx mori Nucleopolyhedrovirus and Ralstonia solanacearum [J]. Acta Sericol. Sin., 2017, 43: 626 | [31] | 刘合永, 陈柳娟, 李文楚等. 纳米银对家蚕核型多角体病毒和青枯劳尔氏菌的杀灭作用 [J]. 蚕业科学, 2017, 43: 626 | [32] | Thurman R B, Gerba C P, Bitton G. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses [J]. Crit. Rev. Env. Contr., 1989, 18: 295 | [33] | Samuni A, Chevion M, Czapski G. Roles of copper and O2-? in the radiation-induced inactivation of T7 bacteriophage [J]. Radial. Res., 1984, 99: 562 | [34] | Samuni A, Aronovitch J, Godinger D, et al. On the cytotoxicity of vitamin C and metal ions: A site-specific Fenton mechanism [J]. Eur. J. Biochem., 1983, 137: 119 | [35] | Zhang J Y, Wang Z P, Guo S, et al. Progress in research on silver as an anti-infective agent for medical uses [J]. Chin. Sci. Bull., 2010, 55: 1639 | [35] | 张净宇, 王卓鹏, 郭 嵩等. 含银抗感染制剂的研究进展 [J]. 科学通报, 2010, 55: 1639 | [36] | Klasen H J. Historical review of the use of silver in the treatment of burns. I. Early uses [J]. Burns, 2000, 26: 117 | [37] | Fox C L Jr, Modak S M. Mechanism of silver sulfadiazine action on burn wound infections [J]. Antimicrob. Agents Chemother., 1974, 5: 582 | [38] | Eichhorn G L, Berger N A, Butzow J J, et al. Metal Ions in Biological Systems: Studies of Some Biochemical and Environmental Problems [M]. New York: Plenum Press, 1973: 43 | [39] | Feng Q L, Wu J, Chen G Q, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus [J]. J. Biomed. Mater. Res., 2000, 52: 662 | [40] | Slawson R M, Van Dyke M I, Lee H, et al. Germanium and silver resistance, accumulation, and toxicity in microorganisms [J]. Plasmid, 1992, 27: 72 | [41] | Tokumaru T, Shimizu Y Y, Fox C L Jr. Antiviral activities of silver sulfadiazine in ocular infection [J]. Res. Commun. Chem. Pathol. Pharmacol., 1974, 8: 151 | [42] | de Sena L á, de Andrade M C, Rossi A M, et al. Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing [J]. J. Biomed. Mater. Res., 2002, 60: 1 | [43] | Chen W, Liu Y, Courtney H S, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating [J]. Biomaterials, 2006, 27: 5512 | [44] | Wang Y H, Zhu Z Y, Zhang F Q, et al. The antibacterial activity of plasma sprayed silver-containing hydroxyapatite coatings [J]. Shanghai J. Stomatol., 2009, 18: 317 | [44] | 王宇华, 朱梓园, 张富强等. 单质银应用于等离子喷涂抗菌涂层的研究 [J]. 上海口腔医学, 2009, 18: 317 | [45] | Dutta P, Wang B. Zeolite-supported silver as antimicrobial agents [J]. Coord. Chem. Rev., 2019, 383: 1 | [46] | Yokota T, Tochihara M, Ohta M. Silver dispersed stainless steel with antibacterial property [J]. Kawasaki Steel Tech. Rep., 2002, (46): 37 | [47] | Jing H M, Chen S H, Dong J S, et al. Anti-bacterium stainless steels and its development [J]. Mater. Protect., 2003, 36(10): 9 | [47] | 敬和民, 陈四红, 董加胜等. 抗菌不锈钢材料及其发展现状 [J]. 材料保护, 2003, 36(10): 9 | [48] | Chiang W C, Hilbert L R, Schroll C, et al. Bacterial inhibiting surfaces caused by the effects of silver release and/or electrical field [J]. Electrochim. Acta, 2008, 54: 108 | [49] | Chiang W C, Tseng I S, M?ller P, et al. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance [J]. Mater. Chem. Phys., 2010, 119: 123 | [50] | Liao K H, Ou K L, Cheng H C, et al. Effect of silver on antibacterial properties of stainless steel [J]. Appl. Surf. Sci., 2010, 256: 3642 | [51] | Huang C F, Chiang H J, Lan W C, et al. Development of silver-containing austenite antibacterial stainless steels for biomedical applications Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms [J]. Biofouling, 2011, 27: 449 | [52] | Papo N, Shai Y. A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides [J]. J. Biol. Chem., 2005, 280: 10378 | [53] | Yang S M, Chen Y C, Pan Y T, et al. Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel [J]. Mater. Sci. Eng., 2016, C63: 376 | [54] | Ma D C, Su J, Dong H, et al. Antibacterial secondary hardening cutter-type stainless steel [P]. Chin Pat, 101333621A, 2010 | [54] | 马党参, 苏 杰, 董 瀚等. 一种抗菌二次硬化刀具不锈钢 [P]. 中国专利, 101333621A, 2010) | [55] | Su J, Sun S H, Ma D C, et al. Antibacterial cutter-type stainless steel [P]. Chin Pat, 101333626A, 2010 | [55] | 苏 杰, 孙绍华, 马党参等. 一种抗菌刀具不锈钢 [P]. 中国专利, 101333626A, 2010) | [56] | Yang Y D, Liu Z, Wang Z M, et al. High-strength-toughness antibacterial stainless steel for knives and preparation method thereof [P]. Chin Pat, 110093567A, 2019 | [56] | 杨玉丹, 刘 峥, 王子萌等. 高强韧抗菌刀具用不锈钢及其制备方法 [P]. 中国专利, 110093567A, 2019) | [57] | Liu Z, Yang Y D, Wang Z M, et al. High-strength high-corrosion-resistance antibacterial stainless steel and preparation method thereof [P]. Chin Pat, 109972040A, 2019 | [57] | 刘 峥, 杨玉丹, 王子萌等. 高强度高耐蚀抗菌刀具用不锈钢及其制备方法 [P]. 中国专利, 109972040A, 2019) | [58] | Lian X T, Zhu J N, Dong H, et al. Effects of micro-alloying elements on microstructure, element distribution and mechanical properties in gray irons [J]. Inter. Metalcast., 2020, DOI: 10.1007/s40962-019-00402-4 | [59] | Adorno A T, Guerreiro M R, Benedetti A V. Influence of silver additions on the aging characteristics of the Cu-10.4at.%Al alloy [J]. J. Alloys Compd., 1998, 268: 122 | [60] | Valdez S, Pérez R, Rodriguez-Diaz R A, et al. Relationship between silver concentration with microstructural and mechanical properties of rolled AlZn alloy [J]. Mater. Sci. Eng., 2010, A527: 3085 | [61] | Xiang H L, Liu D, Chen X P, et al. On the microstructure and mechanical properties of silver-bearing antibacterial CD4MCu duplex stainless steels: Solid solution temperature [J]. Mater. Express., 2019, 9: 1067 | [62] | Han J, Chen L, Duan S M, et al. Efficient and quick inactivation of SARS coronavirus and other microbes exposed to the surfaces of some metal catalysts [J]. Biomed. Environ. Sci., 2005, 18: 176 | [63] | Feng Y M, Tang Z T, Huo X X, et al. Research on anti-virus performance of inner silvered fiber [J]. J. Environ. Health, 2005, 22: 374 | [63] | 冯晏萌, 唐振庭, 霍细香等. 内镀银纤维的抗病毒性能 [J]. 环境与健康杂志, 2005, 22: 374 | [64] | Yang L, Ning X S, Xiao Q F, et al. Development and characterization of porous silver-incorporated hydroxyapatite ceramic for separation and elimination of microorganisms [J]. J. Biomed. Mater. Res., 2007, 81B: 50 | [65] | Bright K R, Sicairos-Ruelas E E, Gundy P M, et al. Assessment of the antiviral properties of zeolites containing metal ions [J]. Food Environ. Virol., 2009, 1: 37 | [66] | Chernousova S, Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal [J]. Angew. Chem., Int. Ed., 2013, 52: 1636 | [67] | Casemiro L A, Martins C H G, Pires-de-Souza F C P, et al. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite-Part I [J]. Gerodontology, 2008, 25: 187 | [68] | Rendin L J, Gamba C L, Johnson W M. Colloidal oxide of silver in the treatment of peptic ulcer; a nine-day therapy [J]. Pak. Med. J., 1958, 61: 612 | [69] | Munger M A, Radwanski P, Hadlock G C, et al. In vivo human time-exposure study of orally dosed commercial silver nanoparticles [J]. Nanomed. Nanotechnol. Biol. Med., 2014, 10: 1 | [70] | Baral V, Dewar A, Connett G. Colloidal silver for lung disease in cystic fibrosis [J]. J. Roy. Soc. Med., 2008, 101: 51 | [71] | Nakane T, Gomyo H, Sasaki I, et al. New antiaxillary odour deodorant made with antimicrobial Ag-zeolite (silver-exchanged zeolite) [J]. Int. J. Cosmet. Sci., 2006, 28: 299 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|