连续切片三维重构,Laves相Cu2Mg,小平面和非小平面枝晶,定向凝固," /> 连续切片三维重构,Laves相Cu2Mg,小平面和非小平面枝晶,定向凝固,"/> three-dimensional serial sectioning,Laves phase Cu2Mg,faceted and non-faceted
dendrite,directional solidification
,"/> 定向凝固Cu-10.25%Mg过共晶合金中初生Laves相Cu<sub>2</sub>Mg枝晶三维形貌
Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 92-100    DOI: 10.3724/SP.J.1037.2012.00483
  论文 本期目录 | 过刊浏览 |
定向凝固Cu-10.25%Mg过共晶合金中初生Laves相Cu2Mg枝晶三维形貌
潘智平1,李双明1,徐磊2,傅恒志1
1.西北工业大学凝固技术国家重点实验室, 西安 710072
2.青岛科技大学材料科学与工程学院, 青岛 266042
THREE-DIMENSIONAL DENDRITIC PATTERN OF PRIMARY LAVES PHASE Cu2Mg IN DIRECTIONAL SOLIDIFICATION OF Cu-10.25 %Mg HYPEREUTECTIC ALLOY
PAN Zhiping1, LI Shuangming1, XU Lei2, FU Hengzhi1
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
2. School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042
引用本文:

潘智平,李双明,徐磊,傅恒志. 定向凝固Cu-10.25%Mg过共晶合金中初生Laves相Cu2Mg枝晶三维形貌[J]. 金属学报, 2013, 49(1): 92-100.
PAN Zhiping, LI Shuangming, XU Lei, FU Hengzhi. THREE-DIMENSIONAL DENDRITIC PATTERN OF PRIMARY LAVES PHASE Cu2Mg IN DIRECTIONAL SOLIDIFICATION OF Cu-10.25 %Mg HYPEREUTECTIC ALLOY[J]. Acta Metall Sin, 2013, 49(1): 92-100.

全文: PDF(1134 KB)  
摘要: 

采用连续切片技术重构了定向凝固Cu-10.25%Mg过共晶合金中初生Laves相Cu2Mg的三维枝晶形貌. 结果表明,Cu2Mg二次枝晶的三维生长形态在不同凝固环境中呈现“八面体”、“棱面”或“板条”状, 侧枝生长形态不对称,二维截面组织中沿生长方向不连续的枝晶实质上是枝晶二次侧枝的横断面组织, 部分沿生长方向分叉的枝晶仅是某个初生枝晶一次轴的局部, 而非二维截面组织推断出的初生枝晶分叉现象.20 μm/s抽拉速率下合金的一次和二次枝晶间距分别为112.53和40.78 μm, 该值与凝固分数fs=0.6时侧枝呈现“板条”枝晶的一次和二次枝晶间距测量值123.30和44.82 μm相近, 比fs=0.8时侧枝呈现“八面体”枝晶的值198.00和47.66 μm要小. 三维初生Cu2Mg枝晶“八面体”、“棱面”和“板条”侧枝的生长速率数值分别为1.40, 1.94和2.66 μm/s, 比一次枝晶主干生长速率要小近一个数量级.

 
关键词 连续切片三维重构')" href="#">    
Abstract

Dendrite, which plays a key role in determining the mechanical properties of the casting parts, is the most important growth form in cast ingot and its pattern has received a wide range of investigations. In this work, the three-dimensional (3D) dendritic morphology of primary phase Cu2Mg in Cu-10.25%Mg hypereutectic alloy has been studied using the serial sectioning technique during directional solidification, due to the fact that the Cu2Mg phase is a typical Laves phase existing in most intermetallic compounds. The experimental results showed that the secondary dendrite profile of primary phase Cu2Mg had different morphologies at the pulling rate of 20 μm/s, which included plate-like, octahedral and faceted patterns. The occurrence of these patterns was related to alloy macro--segregation and the thermo--solutal convection during directional solidification. The growth dendrites and their side-branching morphologies in the three-dimensional section were clearly interpreted differently from those in the two-dimensional section. The two-dimensionally discontinuous dendrites in growth direction were the secondary dendrites of primary phase Cu2Mg and the branching dendrites in two-dimensional section were part of the primary dendrites. Furthermore, the primary and secondary dendrite arm spacing were calculated as 112.53 and 40.78 μm, close to those of the plate-like dendrites measured at the solidified fraction of 0.6 with the values of 123.30 and 44.82 μm, less than those of the octahedral dendrites measured at the solidified fraction of 0.8, which were 198.00 and 47.66 μm. In addition, the growth rates of secondary dendrites with octahedral, faceted and plate-like patterns were calculated as 1.40, 1.94 and 2.66 μm/s, respectively, an order of magnitude less than the pulling rate of 20 μm/s.

 
Key wordsthree-dimensional serial sectioning')" href="#">
收稿日期: 2012-08-13     
基金资助:

 

国家自然科学基金项目50971101和51074127及凝固技术国家重点实验室开放课题SKLSP201010资助
作者简介: 李双明, 男, 1971年生, 教授

 


[1] Warren J. Nat Mater, 2006; 5: 595

[2] Haxhimali T, Karma A, Geonales F, Rappaz M. Nat Mater, 2006; 5: 660

[3] Glicksman M E. Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts. New York: Springer, 2010: 305

[4] Asta M, Bechkermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R. Acta Mater, 2009; 59: 941

[5] Spanos G. Scr Mater, 2006; 55: 3

[6] Mangan M A, Lauren P D, Shiflet G J. J Microscopy, 1997; 188: 36

[7] Kral M V, Spanos G. Scr Mater, 1997; 36: 875

[8] Kral M V, Spanos G. Acta Mater, 1999; 47: 711

[9] Mendoza R, Alkemper J, Voorhees P. Metall Mater Trans, 2003; 27A: 481

[10] Kammer D, Voorhees P W. Acta Mater, 2006; 54: 1549

[11] Luo L S, Wang X, Su Y Q, Li X Z, Guo J J, Fu H Z. Mater Rev, 2010; 24: 1

(骆良顺, 王新, 苏彦庆, 李新中, 郭景杰, 傅恒志. 材料导报, 2010; 24: 1)

[12] Zhao P, Li S M, Fu H Z. Acta Metall Sin, 2012; 48: 33

(赵朋, 李双明, 傅恒志. 金属学报, 2012; 48: 33)

[13] Stein F, Palm M, Sauthoff G. Intermetallics, 2004; 12: 713

[14] Jain I P, Lal C, Jain A. Int J Hydrogen Energ, 2010; 35: 5133

[15] Contieri R J, Rios C T, Zanotello M, Caram R. Mater Charact, 2008; 59: 693

[16] Singh H, Gokhale A M, Tewari A, Zhang S, Mao Y. Scr Mater, 2009; 61: 441

[17] Ohno A. Translated by Xing J D. Solidification of Materials: Theory, Practice and Application.

Beijing: China Machine Press, 1990: 48

 (Ohno A. 邢建东译. 金属的凝固—理论、实践及应用. 北京: 机械工业出版社, 1990: 48)

[18] Stefanescu D M. Science and Engineering of Casting Solidification. 2nd Ed., Berlin: Springer, 2009: 215

[19] Kurz W, Fisher D J. Fundamentals of Solidification. 4th Ed., Switzerland: Trans Tech Publications, 2005: 109

[20]Yu J Q, Yi W Z, Chen B D, Chen H J. Binary Alloy Phase Diagrams.

Shanghai: Shanghai Science and Technology Press, 1987: 256

(虞觉奇, 易文质, 陈邦迪, 陈宏鉴. 二元合金状态图集. 上海: 上海科学技术出版社, 1987: 256)

[21] Quan Q R, Li S M, Fu H Z. Acta Metall Sin, 2010; 46: 500

(全琼蕊, 李双明, 傅恒志. 金属学报, 2010; 46: 500)

[22] Luo L S, Zhang Y M, Su Y Q, Wang X, Guo J J, Fu H Z. Acta Metall Sin, 2011; 47: 275

(骆良顺, 张宇民, 苏彦庆, 王新, 郭景杰, 傅恒志. 金属学报, 2011; 47: 275)

[23] Zhang X F, Zhao J Z. Acta Metall Sin, 2012; 48: 615

(张显飞, 赵九洲. 金属学报, 2012; 48: 615)

[24] Li C, Wu Y Y, Li H. Acta Mater, 2011; 59: 1058

 
No related articles found!