Fe-Ga合金,磁致伸缩,稀土Ce添加,微结构," /> Fe-Ga合金,磁致伸缩,稀土Ce添加,微结构,"/> Fe-Ga alloy,magnetostriction,rare earth Ce addition,microstructure,"/> 稀土Ce添加对Fe<sub>83</sub>Ga<sub>17</sub>合金微结构和磁致伸缩性能的影响
Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 87-91    DOI: 10.3724/SP.J.1037.2012.00498
  论文 本期目录 | 过刊浏览 |
稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响
姚占全1,3,赵增祺1,2,江丽萍2,郝宏波2,吴双霞2,张光睿2,杨建东2
1. 内蒙古工业大学材料科学与工程学院, 呼和浩特 010051
2. 包头稀土研究院, 包头 014030
3. 内蒙古农业大学水利与土木建筑工程学院, 呼和浩特 010018
EFFECTS OF Ce ADDITION ON THE MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe83Ga17 ALLOY
YAO Zhanquan1,3, ZHAO Zengqi1,2, JIANG Liping2,HAO Hongbo 2, WU Shuangxia 2,ZHANG Guangrui2, YANG Jiandong2
1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Huhhot 010051
2. Baotou Research Institute of Rare Earths, Baotou 014030
3. School of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot 010018
引用本文:

姚占全,赵增祺,江丽萍,郝宏波,吴双霞,张光睿,杨建东. 稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(1): 87-91.
YAO Zhanquan, ZHAO Zengqi, JIANG Liping, HAO Hongbo, WU Shuangxia, ZHANG Guangrui, YANG Jiandong. EFFECTS OF Ce ADDITION ON THE MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe83Ga17 ALLOY[J]. Acta Metall Sin, 2013, 49(1): 87-91.

全文: PDF(648 KB)  
摘要: 

为了改善Fe-Ga合金的磁致伸缩性能, 采用真空非自耗电弧炉制备了Fe83Ga17Cex (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0)合金,用X射线衍射仪(XRD)和扫描电镜及能谱仪(SEM/EDS)分析了合金的微结构,用电阻应变法测量了合金的磁致伸缩性能. 结果表明: Fe83Ga17合金由单一的bcc结构A2相组成. 而添加稀土Ce后, 除x=0.2合金外,Fe83Ga17Cex合金主要由bcc结构的A2相和CeFe2第二相组成.此外, Fe83Ga17合金的微观组织是晶粒粗大的等轴晶,而Fe83Ga17Ce0.8合金的微观组织是晶粒细小的柱状晶.与Fe83Ga17对照合金相比, 除x=0.2合金的磁致伸缩系数略小于对照合金外,其他添加稀土Ce后的合金样品磁致伸缩系数均明显增加. 添加稀土Ce后,Fe83Ga17Cex合金的磁致伸缩系数随稀土Ce含量的增加呈现出先增加后减小的变化趋势, x=0.8合金的磁致伸缩系数最大,在557 kA/m外加磁场下, 磁致伸缩系数达到356×10-6.

 
关键词 Fe-Ga合金')" href="#">    
Abstract

Fe-Ga alloy, which was a new type of magnetostrictive material with high magnetostriction, low hysteresis, high tensile strength and good machinability, has been widely studied. However, the magnetostrictive properties of the practically prepared Fe-Ga alloys were quite small at present. In order to improve magnetostrictive properties of the Fe-Ga alloy, the Fe83Ga17Cex (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) alloys were prepared by non--consumable vacuum arc melting furnace using high purity elements under a protective argon atmosphere. The crystal structures and surface morphologies of the alloys were intensively studied by X--ray diffraction (XRD) and scanning electron microscopy (SEM) combined with energy—dispersive spectroscopy (EDS), respectively. The magnetostriction coefficients of the alloys were measured by means of the resistance strain method. The results showed that Fe83Ga17 alloy is composed only of a single phase of A2 with bcc structure. However, the Fe83Ga17Cex alloys are composed of the A2 phase and a small amount of CeFe2 secondary phase with MgCu2 structure except the alloy with x=0.2, which is composed only of a single phase of A2. Furthermore, the microstructure of the Fe83Ga17 alloy presents the equiaxial morphology with coarse grains. However, the microstructure of the Fe83Ga17Ce0.8 alloy is a columnar structure with fine grains. Compared with the Fe83Ga17 alloy, the magnetostriction coefficients of the Fe83Ga17Cex alloys are increased significantly except the alloy with x=0.2. The magnetostriction coefficient of the Fe83Ga17Ce0.2 alloy (81×10-6) is slightly smaller than that of the Fe83Ga17 alloy (84×10-6). With the increase of the rare earth Ce content, the magnetostriction coefficients of the Fe83Ga17Cex alloys increase firstly and then decrease. When x=0.8, the maximum magnetostriction coefficient of 356×10-6 is obtained at the magnetic field of 557 kA/m.For the Fe83Ga17Cex alloys except the alloy with x=0.2, the noticeable increase of the magnetostriction coefficients derives from the following reasons: (1) the secondary phase of CeFe2 with MgCu2 structure appears and increases with the increase of the rare earth Ce content in the alloys. (2) the preferred orientation along <100>of A2 phase of the Fe83Ga17Cex alloy is more favorable to the increase of magnetostriction coefficient of Fe-Ga alloy. As for the Fe83Ga17Ce0.2 alloy, the decrease of magnetostriction coefficient is attributed to the fact that the rare earth Ce dissolves in the Fe-Ga alloy and forms the solid solution alloy.

 
Key wordsFe-Ga alloy')" href="#">
收稿日期: 2012-08-23     
基金资助:

国家自然科学基金项目 51141005和国际合作研究项目 2010DFA52570资助

作者简介: 姚占全, 男, 1971年生, 副教授, 博士生

[1] Li C, Liu J H, Wang Z B, Jiang C B. J Magn Magn Mater,2012; 324: 1177


[2] Hatchard T D, George A E, Farrell S P, Steinitz M O, Adams C P,Cormier M, Dunlap R A. J Alloys Compd, 2010; 494: 420

[3] Gong Y, Jiang C B, Xu H B. Acta Metall Sin, 2006; 42: 830

 (龚彦, 蒋成保, 徐惠彬. 金属学报, 2006; 42: 830)

[4] Na S M, Flatau A B. Scr Mater, 2012; 66: 307

[5] Li J H, Gao X X, Xie J X, Yuan C, Zhu J, Yu R B. Intermetallics, 2012; 26: 66

[6] Fang M L, Zhu J, Li J H, Gao X X. Intermetallics, 2011; 19: 1804

[7] Zhou Y, Wang B W, Li S Y, Wang Z H, Huang W M, Cao S Y, Huang W P. J Magn Magn Mater, 2010; 322: 2104

[8] Reddy K S M, Estrine E C, Lim D H, Smyrl W H, Stadler B J H. Electrochem Commun, 2012; 18: 127

[9] Bormio--Nunes C, Turtelli R S, Mueller H, Grossinger R,Sassik H, Tirelli M A. J Magn Magn Mater, 2005; 290--291: 820

[10] Hu Y, Ding Y T, Zhang Y L, Wang G B, Zhou Z G. Trans Nonferrous Met Soc Chia, 2012; 22: 2146

[11] Zhang J J, Ma T Y, Yan M. Physica, 2010; 405B: 3129

[12] Gaudet J M, Hatchard T D, Farrell S P, Dunlap R A. J Magn Magn Mater,2008; 320: 821

[13] Mellors N J, Zhao X, Simmons L M, Quinn C J, Kilcoyne S H.

 J Magn Magn Mater, 2012; 324: 3817

[14] Sun L, Zhang M C, Gao X X, Qiao Y, Zhu J. J Alloys Compd,2008; 463: 6

[15] Li J H, Gao X X, Zhu J, Li J, Zhang M C. J Univ Sci Technol Beijing, 2009; 31: 1281

 (李纪恒, 高学绪, 朱洁, 李洁, 张茂才. 北京科技大学学报, 2009; 31: 1281)

[16] Jiang L P, Zhang G R, Yang J D, Hao H B, Wu S X, Zhao Z Q. J Rare Earths, 2010; 28: 409

[17] Yu Q G, Jiang L P, Zhang G R, Hao H B, Wu S X, Zhao Z Q. Chin Rare Earths, 2010; 31(4): 21

 (于全功, 江丽萍, 张光睿, 郝宏波, 吴双霞, 赵增祺. 稀土, 2010; 31(4): 21)

[18] Kirchmayr H R, Poldy C A. J Magn Magn Mater, 1978; 8: 1

[19] Wang B W, Cao S Y, Huang W M. Magnetostrictive Material and Devices.Beijing: Metallurgical Industry Press, 2008: 14

 (王博文, 曹淑英, 黄文美. 磁致伸缩材料与器件. 北京:冶金工业出版社, 2008: 14)

[20] Gu M, Zhou J K, Li J G. J Alloys Compd, 2007; 441: 81

[21] Basumatary H, Palit M, Chelvane J A, Pandian S, Raja M M,Chandrasekaran V. Scr Mater, 2008; 59: 878

[22] Xu S F, Zhang H P, Wang W Q, Guo S H, Zhu W, Zhang Y H, Wang X L,Zhao D L, Chen J L, Wu G H. J Alloys Compd, 2009; 469: 203

[23] Zhu J, Peng F L, Fang M L, Li J H, Gao X X, Yu R H. Chin Phys,2011; 20B: 057504

[24] Cui Z Q. Metallography and Heat Treatment. Beijing: MachineryIndustry Press, 2000: 52

 (崔忠圻. 金属学与热处理. 北京: 机械工业出版社, 2000: 52)

[25] Li Y X, Liu H Y, Li S T, Meng F B, Lu Z M, Qu J P, Chen J L, Wu G H,Tang C. J Alloys Compd, 2006; 408--412: 127

[26] Callen E, ed. Gardner F S, Proc Metallic Magnetoacoustic Materiala Workshop, Boston, MA, 1969: 75

[27] Koon N C, Schindler A I, Carter F L. Phys Lett, 1971; 37A: 413

[28] Lograsso T A, Ross A R, Schlagel D L, Clark A E, Wun--Fogle M. J Alloys Compd, 2003; 350: 95

[29] Takahashi T, Hashimoto K, Okazaki T, Furuya Y, Kubota T, Saito C. Scr Mater, 2009; 60: 847

 
No related articles found!