Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 1-10    DOI: 10.3724/SP.J.1037.2011.00496
  综述 本期目录 | 过刊浏览 |
新一代洁净钢生产流程的理论解析
徐匡迪1), 肖丽俊2), 干勇2),  刘浏2), 王新华3)
1) 中国工程院, 北京 100088
2) 钢铁研究总院先进钢铁流程及材料国家重点实验室, 北京 100081
3) 首钢京唐钢铁联合有限责任公司, 唐山 063200
THEORY ANALYSIS ON THE NEW GENERATION OF CLEAN STEEL PRODUCTION PROCESS
XU Kuangdi1), XIAO Lijun2), GAN Yong2), LIU Liu2), WANG Xinhua3)
1) Chinese Academy of Engineering, Beijing 100088
2) State Key Laboratory of Advanced Steel Processes and Products, Central Iron and Steel Research Institute, Beijing 100081
3) Jing Tang Iron and Steel Corporation, Tangshan 063200
引用本文:

徐匡迪 肖丽俊 干勇 刘浏 王新华. 新一代洁净钢生产流程的理论解析[J]. 金属学报, 2012, 48(1): 1-10.
, , , , . THEORY ANALYSIS ON THE NEW GENERATION OF CLEAN STEEL PRODUCTION PROCESS[J]. Acta Metall Sin, 2012, 48(1): 1-10.

全文: PDF(5056 KB)  
摘要: 通过对新一代洁净钢生产流程中主要元素选择性氧化还原的热力学分析, 并结合首钢京唐公司铁水“全三脱”生产洁净钢的技术实践, 研究了新一代洁净钢生产流程中S, P, C等主要元素的控制规律, 并对新一代洁净钢生产流程进行了理论解析, 提出了需要进一步解决的若干工艺问题. 研究表明: 采用CaO/CaF2脱硫剂的KR法脱硫, 可使铁水中S含量稳定地降到0.0020%以下, 终点硫的控制主要取决于脱磷转炉中的回硫量, 减少废钢和渣料等辅助材料带入的S以及适当提高脱磷炉渣碱度是减少半钢回硫量的关键; 在较低温度 (1300-1350 ℃)和较高氧位条件下造碱度合适的渣, 是脱磷转炉实现脱磷保碳的关键, 对于冶炼普通低磷钢, 将脱磷炉半钢P控制在0.03%以下, 则可将脱碳转炉终点磷控制在0.006%以下, 而对于冶炼超低磷钢, 则需将半钢P含量控制在0.008%以下, 转炉终点磷可以降低至 0.0020%以下; 脱碳转炉少渣冶炼、降低铁耗以及高碳出钢是新流程降低洁净钢生产成本和提高钢液洁净度的重要技术特征.
关键词 洁净钢脱硫脱磷铁水预处理选择性氧化    
Abstract:Based on the thermodynamic analysis on the selective oxidation of the main elements in the new generation of clean steel production process, and the production practices of hot metal treatment in the new process of clean steel production accumulated by the Jing Tang Iron and Steel Corporation, the control of the main elements such as S, P, C, etal., were investigated, and the main characteristics of the new generation of clean steel production process were analyzed. We indicate that several production problems must be solved. The research results show that, by using KR desulphurization technology, the S content of hot metal can be steadily controlled to less than 0.0020%. The final S control of the new production process of clean steel depends mainly on the resulfurization content in the dephosphorization furnace. Increasing the slag basicity and reducing the content of S from scrap and slag forming materials can reduce the resulfurization of hot metal. The formation of proper slag basicity at relatively lower hot metal pretreatment temperature (1300-1350 ℃) and at relatively higher oxygen potential is the key to solving the problem of removing P at high C content. The P content in dephosphorization furnace, when producing common low P steel (P<0.006%), may be controlled at less than 0.03%, whereas the P content should be below 0.008% when producing ultra low P steel (P<0.002%). Less-slag smelting, lower Fe losing and high carbon tapping of decarburization furnace are the important technological characteristics of the new generation of clean steel production process.
Key wordsclean steel    desulfurization    dephosphorization    hot metal pretreatment    selective oxidation
收稿日期: 2011-08-04     
作者简介: 徐匡迪, 男, 1937年生, 教授, 中国工程院院士
[1] Oeters F, Stromenger P, Pluschkell W. Arch Eisenhuttenwes, 1977; (44): 727

[2] Niedringhaus J C, Fruehan R J. Metall Trans, 1988; 19B: 261

[3] Iron and Steel Institute of Japan. Iron and Steel Manual. Tokyo: MARUZEN Company Limited, 1981: 154

(日本铁钢协会 编. 铁钢便览. 东京: 丸善株式会社, 1981: 154)

[4] Turkdogan E T. Fundamentals of Steelmaking. London: Cambridge University Press, 1996: 180

[5] Thomas R. Free Energy of Formation of Binary Compounds. London: MIT Press, 1971: 32

[6] Chipman J. Metall Trans, 1970; 1: 2163

[7] Fumitaka T, Midiei N, Takashi O, Nobuo S. Tetsu Hagan´e, 1990; 76: 1664

(月桥文孝, 中村右英, 折本隆, 佐野信雄. 铁と钢, 1990, 76: 1664)

[8] Matsuo T, Yamazaki I, Masuda S, Yoshida K. Steelmaking Conference Proceedings, Detroit: ISS–AIME, 1990: 115

[9] Shozo K, Matsuhide A, Toshiharu T. R&D Kobe Steel Engineering Reports, 1986; 36(1): 23

[10] Toshiyuki U, Kiyohito F. The Tenth Japan–China Symposium on Science and Technology of Iron and Steel, Chiba, Japan, 2004(11): 122
[1] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[2] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[3] 王强, 王连钰, 李宏侠, 蒋佳伟, 朱晓伟, 郭占成, 赫冀成. 钢包出钢末期漩涡抑制机理探究及防漩设计[J]. 金属学报, 2018, 54(7): 959-968.
[4] 彭晓, 王福会. 纳米晶金属材料的高温腐蚀行为*[J]. 金属学报, 2014, 50(2): 202-211.
[5] 高翱 王强 李德军 柴海山 赵立佳 赫冀成. 电磁出钢系统中Fe-C合金的状态研究[J]. 金属学报, 2011, 47(2): 219-223.
[6] 高翱 王强 李德军 金百刚 王凯 赫冀成. 电磁引流技术的出钢效率及其影响因素[J]. 金属学报, 2010, 46(5): 634-640.
[7] 徐匡迪. 关于洁净钢的若干基本问题[J]. 金属学报, 2009, 45(3): 257-269.
[8] 张志刚; P.Y.Hou; 牛焱 . Fe-xCr-10Al (x=0, 5, 10)合金在900 ℃的氧化: 第三组元作用的新例子[J]. 金属学报, 2005, 41(6): 649-654 .
[9] 钱余海; 李美栓; 张亚明 . 外加拉应力对Ti3A1基合金500—700℃下选择性氧化的影响[J]. 金属学报, 2003, 39(9): 989-994 .
[10] 牛建平; 杨克努; 金涛; 孙晓峰; 管恒荣; 胡壮麒 . Ni基高温合金的真空冶炼脱硫[J]. 金属学报, 2001, 37(5): 499-502 .
[11] 吴铿; 梁志刚; 张二华; 李洪民 . LF精炼过程中硫分配比和脱硫动力学方程研究[J]. 金属学报, 2001, 37(10): 1069-1072 .
[12] 王淑兰; 李光强 . 融熔Cu-S, Fe-S/CaO-SiO2-Al2O3体系界面胶硫反应动力学的阻抗谱分析[J]. 金属学报, 1999, 35(3): 306-310 .
[13] 魏季和;朱守军;郁能文. 钢液RH精炼中喷粉脱硫的动力学[J]. 金属学报, 1998, 34(5): 497-505.
[14] 徐匡迪;蒋国昌;张晓兵;徐建伦. 不锈钢母液铁浴熔融还原过程中的铬回收率及母液的氧化脱磷[J]. 金属学报, 1998, 34(5): 467-472.
[15] 郭兴敏;韩其勇;刘浏;丁容;金振坚. 碳饱和铁水中磷传质系数的测定[J]. 金属学报, 1997, 33(10): 1101-1104.